当前位置: 首页 > news >正文

DP:二维费用背包问题

文章目录

  • 🎵二维费用背包问题
    • 🎶引言
    • 🎶问题定义
    • 🎶动态规划思想
    • 🎶状态定义和状态转移方程
    • 🎶初始条件和边界情况
  • 🎵例题
    • 🎶1.一和零
    • 🎶2.盈利计划
  • 🎵总结

在这里插入图片描述

在这里插入图片描述

🎵二维费用背包问题

🎶引言

背包问题是算法中的经典问题之一,其变种繁多。本文将介绍二维费用背包问题及其解决方案。

🎶问题定义

二维费用背包问题可以描述为:给定 (N) 个物品,每个物品有两个费用和一个价值,在两种费用的限制下,如何选择物品使得总价值最大。

🎶动态规划思想

动态规划是解决背包问题的常用方法。通过定义合适的状态和状态转移方程,我们可以有效地解决二维费用背包问题。

🎶状态定义和状态转移方程

我们定义 dp[i][j][k] 表示前 i 个物品在费用1不超过 j 和费用2不超过 k 的情况下的最大价值。状态转移方程为:

d p [ i ] [ j ] [ k ] = max ⁡ ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − c o s t 1 [ i ] ] [ k − c o s t 2 [ i ] ] + v a l u e [ i ] ) dp[i][j][k] = \max(dp[i-1][j][k], dp[i-1][j-cost1[i]][k-cost2[i]] + value[i]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][jcost1[i]][kcost2[i]]+value[i])

🎶初始条件和边界情况

初始条件为 dp[0][j][k] = 0,表示没有物品时的最大价值为 0。边界条件需要根据实际问题进行处理。

🎵例题

🎶1.一和零

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题就是让我们找子集的长度,这个子集满足:当中的0不大于m个,当中的1不大于n个,最后返回最大的子集的长度,所以我们首先想到的是二维费用背包问题,因为有两个限制,这里的背包的限制就是0和1的个数的限制,这里的物品其实就是每个字符串。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前 i i i个物品中选择的所有组合中,满足0的个数不大于m,1的个数不大于n个的所有组合中子集长度最大的那个的长度。
状态转移方程:
在这里插入图片描述
这里的a和b代表的是当前i位置字符串中0和1分别的个数,所以我们在进行填表的时候应该遍历一下字符串,将当中的0和1分别记录一下,状态转移方程:

d p [ i ] [ j ] [ k ] = m a x ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − a ] [ k − b ] ) dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-a][k-b]) dp[i][j][k]=max(dp[i1][j][k],dp[i1][ja][kb])

初始化:

代码:
未优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<vector<int>>> dp(sz + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = 0;j <= m;j++){for (int k = 0;k <= n;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= a && k >= b)dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - a][k - b] + 1);}}}return dp[sz][m][n];}
};

滚动数组优化的代码:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n){int sz = strs.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for (int i = 1;i <= sz;i++){//统计一下字符串中0和1的个数int a = 0, b = 0;for (auto e : strs[i - 1]){if (e == '1')b++;else a++;}for (int j = m;j >=a;j--)for (int k = n;k >=b;k--)dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}return dp[m][n];}
};

运行结果:
在这里插入图片描述

🎶2.盈利计划

题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题每个group对应一个profit,下标是对应的。
在这里插入图片描述
根据上面的图片加上题目要求,我们可以得知,我们每次选择的利润必须大于给定的 m i n P r o f i t minProfit minProfit然后每次需要的人口不能超过 n n n,最后求出满足这个条件的所有组合有多少种。
状态表示: d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示从前i个工作计划中选择,人数不超过i的,但是盈利大于k的所有组合数的总和。
状态转移方程:
第一种状态:不选择i位置, d p [ i − 1 ] [ j ] [ k ] dp[i-1][j][k] dp[i1][j][k]

第二种状态:选择i位置,首先考虑二维 d p [ i − 1 ] [ j − g r o u p [ i ] ] dp[i-1][j-group[i]] dp[i1][jgroup[i]]这里我们考虑一下 j − g r o u p [ i ] ≤ 0 j-group[i]\leq0 jgroup[i]0是否成立将group[i]移到右边去可以得到: j ≤ g r o u p [ i ] j\leq group[i] jgroup[i]这个是什么意思呢?表示i工作需要的人口是大于总人口j的,所以这肯定是不可能的,所以这里中只能是 j − g r o u p [ i ] ≥ 0 j-group[i]\geq0 jgroup[i]0,我们再来考虑三维的: d p [ i − 1 ] [ j − g r o u p [ i ] ] [ k − p r o f i t [ i ] ] dp[i-1][j-group[i]][k-profit[i]] dp[i1][jgroup[i]][kprofit[i]]我们来考虑 k − p r o f i t [ i ] ≤ 0 k-profit[i]\leq0 kprofit[i]0是否成立,首先我们还是继续移一下项: k ≤ p r o f i t [ i ] k \leq profit[i] kprofit[i]这里k表示总的利润,profit表示当前工作产出的利润,所以这里的意思就表示无论前面总利润是多少,这里都都能满足当前的利润,所以我们只需要选择0即可,所以第二种状态:

d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i1][jgroup[i]][max(0,kprofit[i])]

最后这两种状态的总和就是当前状态的所有组合的总和:

d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j ] [ k ] + d p [ i − 1 ] [ j − g r o u p [ i ] ] [ m a x ( 0 , k − p r o f i t [ i ] ) ] dp[i][j][k]=dp[i-1][j][k]+dp[i-1][j-group[i]][max(0,k-profit[i])] dp[i][j][k]=dp[i1][j][k]+dp[i1][jgroup[i]][max(0,kprofit[i])]

代码:
未优化的代码:

class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {int len = group.size();int MOD = 1e9 + 7;vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(minProfit + 1)));for (int j = 0;j <= n;j++){dp[0][j][0] = 1;}for (int i = 1;i <= len;i++){for (int j = 0;j <= n;j++){for (int k = 0;k <= minProfit;k++){dp[i][j][k] = dp[i - 1][j][k];if (j >= group[i-1])dp[i][j][k] += dp[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])];dp[i][j][k] %= MOD;}}}return dp[len][n][minProfit];}
};

优化过后的代码:

int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) 
{int len = group.size();int MOD = 1e9 + 7;vector<vector<int>> dp(n + 1, vector<int>(minProfit + 1));for (int j = 0;j <= n;j++)dp[j][0] = 1;for (int i = 1;i <= len;i++)for (int j = n;j >= group[i - 1];j--)for (int k = 0;k <= minProfit;k++){dp[j][k] += dp[j - group[i - 1]][max(0, k - profit[i - 1])];dp[j][k] %= MOD;}return dp[n][minProfit];
}

运行结果:
在这里插入图片描述

🎵总结

通过本文的学习,我们了解了二维费用背包问题的基本概念和解决方法。与传统的单一费用背包问题不同,二维费用背包问题在解决时需要同时考虑两种费用的限制,这使得问题更具挑战性,但也更贴近实际应用场景。我们通过动态规划的方法,逐步构建状态转移方程,并利用二维数组来存储中间结果,从而实现了对问题的高效求解。

在实际应用中,掌握二维费用背包问题的解决思路,可以帮助我们在资源分配、投资组合等多方面优化决策。希望通过本次的学习,大家不仅能够掌握相关的算法技巧,还能够举一反三,灵活应用于更多复杂的优化问题中。

今后,我们将继续探讨更为复杂的动态规划问题,进一步提升算法设计和问题求解能力。谢谢大家的阅读,希望本文对你有所帮助。

http://www.lryc.cn/news/393119.html

相关文章:

  • C语言标准库中的函数
  • Qt5.9.9 关于界面拖动导致QModbusRTU(QModbusTCP没有测试过)离线的问题
  • API的定义理解
  • 启航IT之旅:高考假期预习指南
  • HarmonyOS开发:循环渲染ForEach
  • 构建工程化:多种不同的工程体系如何编写MakeFile
  • 聚焦从业人员疏散逃生避险意识能力提升,推动生产经营单位每年至少组织开展(疏散逃生演练,让全体从业人员熟知逃生通道、安全出口及应急处置要求,形成常态化机制。
  • 【手机取证】如何使用360加固助手给apk加固
  • Vue的介绍
  • MySql数据库常用指令合集
  • ArcGIS Pro SDK (七)编辑 13 注解
  • 模拟面试001-Java开发工程师+简历+问题+回答
  • 微信小程序 ——入门介绍及简单的小程序编写
  • ubuntu20.04安装lio-sam
  • Kafka系列之Kafka知识超强总结
  • 第32讲:K8S集群与Cephfs文件系统集成
  • 服务器数据恢复—DS5300存储raid5阵列数据恢复案例
  • 使用Ubuntu 22.04安装Frappe-Bench【二】
  • MySQL增删改查
  • Java跳出循环的四种方式
  • 直播预告|飞思实验室暑期公益培训7月10日正式开启,报名从速!
  • 3-2 梯度与反向传播
  • 【qt】如何获取本机的IP地址?
  • 芯片的PPA-笔记
  • 2024阿里巴巴全球数学竞赛决赛中的数列题解析(分析与方程方向第4题)
  • 学java的第3天 后端商城小程序工作
  • DevOps实战:使用GitLab+Jenkins+Kubernetes(k8s)建立CI_CD解决方案
  • Apache Seata配置管理原理解析
  • 深入理解C# log4Net日志框架:功能、使用方法与性能优势
  • BDD 100K dataset 的标签数据结构(json文件)