当前位置: 首页 > news >正文

基于GWO灰狼优化的多目标优化算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1灰狼优化算法原理

4.2 多目标优化问题(MOP)的帕累托最优解

4.3 基于GWO的多目标优化算法

5.完整程序


1.程序功能描述

基于GWO灰狼优化的多目标优化算法matlab仿真,目标函数为2个目标函数。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

迭代1000次:

(完整程序运行后无水印)

3.核心程序

.......................................................................
% MOGWO(多目标灰狼优化)主循环
for it=1:Mitersit% 更新支配关系并获取非支配解集GWO0=func_domination(GWO0);GWO0n=func_Nondomination(GWO0);% 更新存档并执行非支配排序GWO1=[GWO1GWO0n];GWO1=func_domination(GWO1);GWO1=func_Nondomination(GWO1);% 重新分配超立方体索引for i=1:numel(GWO1)[GWO1(i).GridIndex,GWO1(i).GridSubIndex]=func_index(GWO1(i),G);end% 控制存档大小if numel(GWO1)>SmenEXTRA=numel(GWO1)-Smen;GWO1=func_Rep(GWO1,EXTRA,gamma);ycost=func_Costs(GWO1);G=func_Hypercubes(ycost,Ngd,alpha);end% 结果处理与绘图costs=func_Costs(GWO0);ycost=func_Costs(GWO1);figure(1)plot(costs(1,:),costs(2,:),'b.');hold onplot(ycost(1,:),ycost(2,:),'ro');legend('灰狼','Non-dominated解决方案');hold offdrawnowif it==1figure(2)plot(costs(1,:),costs(2,:),'b.');hold onplot(ycost(1,:),ycost(2,:),'ro');legend('灰狼','Non-dominated解决方案');title(['迭代次数:',num2str(it)]);endif it==50figure(3)plot(costs(1,:),costs(2,:),'b.');hold onplot(ycost(1,:),ycost(2,:),'ro');legend('灰狼','Non-dominated解决方案');title(['迭代次数:',num2str(it)]);endif it==200figure(4)plot(costs(1,:),costs(2,:),'b.');hold onplot(ycost(1,:),ycost(2,:),'ro');legend('灰狼','Non-dominated解决方案');title(['迭代次数:',num2str(it)]);endif it==500figure(5)plot(costs(1,:),costs(2,:),'b.');hold onplot(ycost(1,:),ycost(2,:),'ro');legend('灰狼','Non-dominated解决方案');title(['迭代次数:',num2str(it)]);end
end
64

4.本算法原理

        灰狼优化(Grey Wolf Optimizer, GWO)是一种基于群体智能的全球优化算法,由Mirjalili等人在2014年提出,灵感来源于灰狼在自然界中的狩猎行为。该算法通过模拟灰狼的社会层级结构和狩猎策略,有效地搜索解空间,以找到问题的最优解。将GWO应用于多目标优化问题(Multi-Objective Optimization Problems, MOOPs),则形成了基于GWO的多目标优化算法,它能够处理具有多个冲突目标函数的优化问题,寻求所谓的帕累托最优解集。

4.1灰狼优化算法原理

        在GWO中,算法中的每个搜索代理(解)被称作一只“狼”,它们在解空间中搜索以找到最优解。算法定义了三种角色的狼:α(领导者)、β(跟随者)和δ(猎手)。搜索过程通过模仿灰狼的领导模式、追捕猎物和群体协作行为进行。

算法步骤:
  1. 初始化:随机生成初始狼群,并计算每个狼的位置(解)的适应值。
  2. 更新α、β、δ:根据适应值确定当前群体中的领导者、跟随者和猎手。
  3. 更新位置:根据领导者的位置和其他狼的位置更新每只狼的位置。
  4. 评估并更新:计算新位置的适应值,并更新α、β、δ。
  5. 重复步骤2-4,直至满足停止准则(如迭代次数、适应值收敛)。

4.2 多目标优化问题(MOP)的帕累托最优解

        在多目标优化中,帕累托最优解是指不存在另一个解在所有目标函数上都优于它,至少在一个目标上更好,其余目标至少一样好。寻找帕累托前沿(即所有非支配解的集合)是多目标优化的核心。

4.3 基于GWO的多目标优化算法

        将GWO应用于多目标优化,关键在于如何在多目标环境下定义适应值和更新策略,以保证算法能够有效地探索和维护帕累托前沿。一种常用的方法是引入多目标适应度评价和多目标优化策略,如非支配排序和拥挤距离计算。

      基于GWO的多目标优化算法通过模仿灰狼的社交行为和策略,结合多目标优化中的非支配排序和拥挤距离等策略,能够有效地搜索多目标优化问题的解空间,发现帕累托前沿解集。这种方法不仅保持了GWO的高效搜索能力,而且增加了处理多目标问题的能力,适用于解决工程、经济、环境等领域的复杂决策问题。

5.完整程序

VVV

http://www.lryc.cn/news/392589.html

相关文章:

  • 排序算法-java版本
  • Java+前后端分离架构+ MySQL8.0.36产科信息管理系统 产科电子病历系统源码
  • js使用websocket,vue使用websocket,copy即用
  • 【鸿蒙学习笔记】Stage模型工程目录
  • 算法基础-----【动态规划】
  • Java中的响应式编程与Reactor框架
  • 政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署ComfyUI:功能最强大、模块化程度最高的Stable Diffusion图形用户界面和后台
  • 匿名内部类
  • react_web自定义组件_多类型Modal_搜索栏Search
  • Apache Flink架构介绍
  • 华为HCIP Datacom H12-821 卷28
  • 安装Nginx以及简单使用 —— windows系统
  • 【UE5.3】笔记8 添加碰撞,检测碰撞
  • 丝滑流畅!使用kimi快速完成论文仿写
  • 【C++】认识使用string类
  • 如何在 Odoo 16 中对 Many2Many 字段使用 Group by
  • PCL从理解到应用【03】KDTree 原理分析 | 案例分析 | 代码实现
  • Windows 11内置一键系统备份与还原 轻松替代Ghost
  • leetCode-hot100-动态规划专题
  • 【算法笔记自学】入门篇(2)——算法初步
  • Redis基础教程(六):redis 哈希(Hash)
  • 鸿蒙开发设备管理:【@ohos.account.appAccount (应用帐号管理)】
  • java项目自定义打印日志,打印请求方式,参数用时等
  • 03:EDA的进阶使用
  • Linux/Unix系统指令:(tar压缩和解压)
  • MySQL 日期和时间函数知识点总结
  • 鸿蒙登录页面及页面跳转的设计
  • 【居家养老实训室】:看中医保健在养老中的应用
  • 【区块链+基础设施】区块链服务网络 BSN | FISCO BCOS应用案例
  • 六、快速启动框架:SpringBoot3实战-个人版