当前位置: 首页 > news >正文

波动方程 - 在三维图中动态显示二维波动方程的解就像水面波澜起伏

波动方程 - 在三维图中动态显示二维波动方程的解就像水面波澜起伏

flyfish

波动方程的求解结果通常不是一个单一的数值,而是一个函数或一组函数,这些函数描述了波随时间和空间的传播情况。具体来说,波动方程的解可以是关于时间和空间变量的函数,表示在这些变量下波的振幅或位置。
在这里插入图片描述

二维波动方程

二维波动方程的形式为:
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial^2 u}{\partial t^2} = c^2 \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) t22u=c2(x22u+y22u)其中, u ( x , y , t ) u(x, y, t) u(x,y,t) 是时间 t t t 和空间 ( x , y ) (x, y) (x,y) 上的波函数, c c c 是波速。

差分公式

为了数值求解这个偏微分方程,我们可以将其离散化。离散化的过程中使用以下有限差分近似:

  1. 时间方向的二阶偏导数:
    ∂ 2 u ∂ t 2 ≈ u i , j n + 1 − 2 u i , j n + u i , j n − 1 Δ t 2 \frac{\partial^2 u}{\partial t^2} \approx \frac{u^{n+1}_{i,j} - 2u^{n}_{i,j} + u^{n-1}_{i,j}}{\Delta t^2} t22uΔt2ui,jn+12ui,jn+ui,jn1

  2. 空间 x x x 方向的二阶偏导数:
    ∂ 2 u ∂ x 2 ≈ u i + 1 , j n − 2 u i , j n + u i − 1 , j n Δ x 2 \frac{\partial^2 u}{\partial x^2} \approx \frac{u^{n}_{i+1,j} - 2u^{n}_{i,j} + u^{n}_{i-1,j}}{\Delta x^2} x22uΔx2ui+1,jn2ui,jn+ui1,jn

  3. 空间 y y y 方向的二阶偏导数:
    ∂ 2 u ∂ y 2 ≈ u i , j + 1 n − 2 u i , j n + u i , j − 1 n Δ y 2 \frac{\partial^2 u}{\partial y^2} \approx \frac{u^{n}_{i,j+1} - 2u^{n}_{i,j} + u^{n}_{i,j-1}}{\Delta y^2} y22uΔy2ui,j+1n2ui,jn+ui,j1n

将这些差分公式代入波动方程中,得到离散化的波动方程:
u i , j n + 1 − 2 u i , j n + u i , j n − 1 Δ t 2 = c 2 ( u i + 1 , j n − 2 u i , j n + u i − 1 , j n Δ x 2 + u i , j + 1 n − 2 u i , j n + u i , j − 1 n Δ y 2 ) \frac{u^{n+1}_{i,j} - 2u^{n}_{i,j} + u^{n-1}_{i,j}}{\Delta t^2} = c^2 \left( \frac{u^{n}_{i+1,j} - 2u^{n}_{i,j} + u^{n}_{i-1,j}}{\Delta x^2} + \frac{u^{n}_{i,j+1} - 2u^{n}_{i,j} + u^{n}_{i,j-1}}{\Delta y^2} \right) Δt2ui,jn+12ui,jn+ui,jn1=c2(Δx2ui+1,jn2ui,jn+ui1,jn+Δy2ui,j+1n2ui,jn+ui,j1n)
整理得到显式更新公式:
u i , j n + 1 = 2 u i , j n − u i , j n − 1 + c 2 Δ t 2 ( u i + 1 , j n − 2 u i , j n + u i − 1 , j n Δ x 2 + u i , j + 1 n − 2 u i , j n + u i , j − 1 n Δ y 2 ) u^{n+1}_{i,j} = 2u^{n}_{i,j} - u^{n-1}_{i,j} + c^2 \Delta t^2 \left( \frac{u^{n}_{i+1,j} - 2u^{n}_{i,j} + u^{n}_{i-1,j}}{\Delta x^2} + \frac{u^{n}_{i,j+1} - 2u^{n}_{i,j} + u^{n}_{i,j-1}}{\Delta y^2} \right) ui,jn+1=2ui,jnui,jn1+c2Δt2(Δx2ui+1,jn2ui,jn+ui1,jn+Δy2ui,j+1n2ui,jn+ui,j1n)

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation# 定义参数
t_max = 3  # 时间范围
x_max = 1  # 空间范围
y_max = 1
m = 320  # 时间方向的格子数
n = 32  # 空间 x 方向的格子数
k = 32  # 空间 y 方向的格子数# 时间和空间步长
dt = t_max / (m - 1)
dx = x_max / (n - 1)
dy = y_max / (k - 1)# 初始化解数组
u = np.zeros((m, n, k))# 设置初始条件
x_vals, y_vals = np.linspace(0, x_max, n), np.linspace(0, y_max, k)
X, Y = np.meshgrid(x_vals, y_vals)
u[0, :, :] = np.sin(4 * np.pi * X) + np.cos(4 * np.pi * Y)
u[1, :, :] = np.sin(4 * np.pi * X) + np.cos(4 * np.pi * Y)# 按照公式进行差分
for ii in range(1, m - 1):for jj in range(1, n - 1):for kk in range(1, k - 1):u[ii + 1, jj, kk] = (dt**2 * (u[ii, jj + 1, kk] + u[ii, jj - 1, kk] - 2 * u[ii, jj, kk]) / dx**2 +dt**2 * (u[ii, jj, kk + 1] + u[ii, jj, kk - 1] - 2 * u[ii, jj, kk]) / dy**2 +2 * u[ii, jj, kk] - u[ii - 1, jj, kk])# 创建图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_zlim(-4, 4)# 初始化图像
surf = ax.plot_surface(X, Y, u[0, :, :], cmap='viridis')def update(frame):ax.clear()ax.set_zlim(-4, 4)ax.set_title(f"Time step: {frame}")surf = ax.plot_surface(X, Y, u[frame, :, :], cmap='viridis')return surf,# 创建动画
ani = FuncAnimation(fig, update, frames=m, repeat=True)
ani.save('wave_quation.gif', writer='imagemagick')
plt.show()
http://www.lryc.cn/news/391426.html

相关文章:

  • yum命令提示 错误:rpmdb: BDB0113 Thread/process 4153/139708200269632
  • 欢乐钓鱼大师游戏攻略:在什么地方掉称号鱼?云手机游戏辅助!
  • 什么是构造函数?Java 中构造函数的重载如何实现?
  • Linux内核 -- ARMv7 与 ARMv8 中的 asmlinkage 作用及使用
  • GPT提示词模板
  • WRF学习——使用CMIP6数据驱动WRF/基于ncl与vdo的CMIP6数据处理
  • 机器人控制系列教程之Delta机器人动力学分析
  • VIM介绍
  • 课设:选课管理系统(Java+MySQL)
  • 动态规划 剪绳子问题
  • 上位机图像处理和嵌入式模块部署(mcu项目1:实现协议)
  • 【NLP学习笔记】load_dataset加载数据
  • 企业如何选择好用的供应商管理系统
  • 震惊!运气竟能如此放大!运气的惊人作用,你了解吗?
  • 记录一次Apache Tomcat 处理返回自定义的404页面
  • 【piania 的用法】
  • 上海计算机考研炸了,这所学校慎报!上海大学计算机考研考情分析!
  • 面对全球新能源汽车合作发展创维汽车如何实现共赢
  • 安全和加密常识(1)对称加密和非对称加密以及相应算法
  • afrog-漏洞扫描(挖洞)工具【了解安装使用详细】
  • c++类模板--无法解析的外部符号
  • Postman介绍
  • 以智能化为舵手,引领现代计算机系统架构新航向
  • 揭秘品牌成功秘诀:品牌营销策略的核心要素大公开
  • java如何把list转换成map
  • vite typescript 配置跨域代理
  • ArcGIS Pro SDK (七)编辑 10 捕捉
  • 开始尝试从0写一个项目--后端(一)
  • STM32第十二课:ADC检测烟雾浓度(MQ2)
  • 1975react社区问答管理系统开发mysql数据库web结构node.js编程计算机网页源码