当前位置: 首页 > news >正文

Matlab绘制隐函数总结-二维和三维

1.二维隐函数

二维隐函数满足f(x,y)=0f(x,y)=0f(x,y)=0,这里无法得到y=f(x)y=f(x)y=f(x)的形式。不能通过普通函数绘制。

我们要关注的是使用fplot函数和fimplicit函数。
在这里插入图片描述

第1种情况:基本隐函数

基本的隐函数形式形如:

x2+y2+2x=2(x2+y2)12x^{2}+y^{2}+2 x=2\left(x^{2}\right.\left.+y^{2}\right)^{\frac{1}{2}}x2+y2+2x=2(x2+y2)21

原来有个ezplot函数的,但是现在Matlab不推荐使用了,可能要慢慢淘汰掉了。老版的写法是

ezplot('x^2+y^2+2*x=2*sqrt(x^2+y^2)') 

或者

syms x y 
ezplot(x^2+y^2+2*x-2*sqrt(x^2+y^2)) 

(后面我们也不再谈ezplot函数)

下面是官方推荐的写法:

使用fplot函数

fplot('x^2+y^2+2*x=2*sqrt(x^2+y^2)')

使用fimplicit函数

注意和fplot函数不同,Matlab官方提示:为了获得最佳性能和避免产生警告消息,请使用按元素运算符。例如,使用 x.*y 而不是 x*y

fimplicit( x.^2+y.^2+2.*x-2.*sqrt(x.^2+y.^2))

或者

fimplicit(@(x,y) x.^2+y.^2+2.*x-2.*sqrt(x.^2+y.^2))

总结:一般的隐函数可以使用fplot函数或者fimplicit函数绘制。

第2种情况:隐函数带变量

形如:

x2+y2+ax=a(x2+y2)12x^{2}+y^{2}+a x=a\left(x^{2}+y^{2}\right)^{\frac{1}{2}}x2+y2+ax=a(x2+y2)21

根据实际需要可将aaa事先具体赋值, 但使用中应注意,绘图语句不能简单采用前面基本格式的 形式 ,不能写作,会报错

a = 2; 
fplot('x^2+y^2+a*x-a*sqrt(x^2+y^2)');

因为函数包括单引号时,相当于是符号表达式,变量a的值作为一个参数,不能传进函数,导致fplot()不能正常绘图。

使用fimplicit函数

fplot函数测试了不行,使用fimplicit函数下面的代码是可以的。

a=2;
syms x y
fimplicit(x.^2+y.^2+ a.*x-a.*sqrt(x.^2+y.^2))

总结:带有未知参数的隐函数使用fimplicit函数绘制

第3种情况:带有多个变量的隐函数组的绘图

形如:

f(x,y)=x+y2=a,g(x,y)=x2−y=bf(x, y)=x+y^2=a,\quad g(x, y)=x^2-y=bf(x,y)=x+y2=a,g(x,y)=x2y=b

不妨令:

a=3,b=−3a=3,b=-3a=3,b=3

使用fimplicit函数

因为还是带有未知参数的隐函数,我们还是用使用fimplicit函数绘制。

a=3;b=-3;
syms x y
f=x+y^2-a;
g=x^2-y-b;
fimplicit(f);
hold on;
fimplicit(g)
title('x+y^2-a=0 x^2-y-b=0 a=3 b=-3')

在这里插入图片描述

总结:带有多个变量的隐函数组使用fimplicit函数绘制,加上hold on命令

2.三维隐函数

三维隐函数满足f(x,y,z)=0f(x,y,z)=0f(x,y,z)=0,这里无法得到z=f(x,y)z=f(x,y)z=f(x,y)的形式。不能通过普通函数绘制。

我们要关注的是使用等面值计算函数isosurface和面元渲染函数patch分布实现三维隐函数曲面的绘制方法。

我们使用isosurface的调用方式是

[f,v] = isosurface(X,Y,Z,V,isovalue)

官方的解释是该语句返回由isovalue指定的某个等值面的表面(Faces)和顶点(Vertices)数据,并存放在单独的数组f、v中。我们绘制的是v=f(x,y,z)=0v=f(x,y,z)=0v=f(x,y,z)=0的三维图形,则isovalue=0

patch函数是面元渲染函数,对曲面进行修饰,相关的调用方式是:patch(X,Y,Z,C)

patch(X,Y,Z,C)

它以三维坐标(X,Y,Z)为顶点,构造三维曲面,c是R G B颜色向量。另一个相关的调用方式是:

patch('Faces',F,'Vertices',V)

它通过包含Faces、Vertices两个的数组F、V来构造三维曲面,F和V可以由等值面函数isosurface计算而得。

对于三元显函数v=f(x,y,z)v=f(x,y,z)v=f(x,y,z) 来说,当v=0v=0v=0时的等值面就是z=g(x,y)z=g(x,y)z=g(x,y)的三维曲面。isosurface函数可以计算v=0v=0v=0的等值面,返回结果包括表面和顶点数据,并存放于数组fffvvv中,再输入给patch函数,能构造三维曲面,还可以根据需要设置颜色、亮度、三维视角等。画图的步骤可以归纳为:

(1)用meshgrid函数产生网格点,同时可确定坐标范围。
(2)引用隐函数表达式计算格点函数值val。
(3)调用[f,v]=isosurface(x,y,z,val,0)计算隐函数等值面并返回到f、v。
(4)调用patch(‘Faces’,f,‘Vertices’,v,‘facecolor’,‘interp’,‘EdgeColor’,‘k’)对曲面修饰。

[x,y,z]=meshgrid(-1.5:0.1:1.5,-1.5:0.1:1.5,-1.5:0.1:1.5);
v=(x.^2+(9/4)*y.^2+z.^2-1).^3-x.^2.*z.^3-(9/80)*y.^2.*z.^3;
[f,v]=isosurface(x,y,z,v,0);
p=patch('Faces',f,'Vertices',v,'CData',v(:,3),'facecolor','interp',...'EdgeColor','k');
view(3); grid on;

来看下效果!

在这里插入图片描述

http://www.lryc.cn/news/3907.html

相关文章:

  • 如何直观地理解傅立叶变换?频域和时域的理解
  • STC15读取内部ID示例程序
  • Xml格式化与高亮显示
  • 【GlobalMapper精品教程】045:空间分析工具(2)——相交
  • 4年外包终上岸,我只能说这类公司能不去就不去..
  • sklearn降维算法1 - 降维思想与PCA实现
  • 「期末复习」线性代数
  • 伏并网低电压穿越技术
  • opencv的环境搭建
  • C++智能指针
  • MongoDB--》MongoDB数据库以及可视化工具的安装与使用—保姆级教程
  • JAVA 基础题
  • Flutter desktop端多屏幕展示问题处理
  • 每天10个前端小知识 【Day 9】
  • Elasticsearch的读写搜索过程
  • 线上服务质量的问题该如何去处理?你有什么思路?
  • IOC 配置,依赖注入的三种方式
  • 自动机,即有限状态机
  • 第一部分:简单句——第一章:简单句的核心——二、简单句的核心变化(主语/宾语/表语的变化)
  • VSCode Markdown写作引入符合规范的参考文献
  • 电子学会2022年12月青少年软件编程(图形化)等级考试试卷(四级)答案解析
  • JUC并发编程学习笔记(一)——知识补充(Threadlocal和引用类型)
  • 2022级上岸浙理工MBA的复试经验提炼和备考建议
  • 人大金仓数据库索引的应用与日常运维
  • 20230211英语学习
  • 5G图书推荐
  • 【Linux下代码调试工具】gdb 的基本使用
  • UART和RS232、RS485的联系和区别、以及对软件编程的影响
  • ajax是什么?咋实现的
  • AI推理计算框架中的内存优化