当前位置: 首页 > news >正文

AI与Python共舞:如何利用深度学习优化推荐系统?(2)

推荐系统的前世今生

推荐系统的历史可以追溯到20世纪90年代,从最初的基于内容过滤和协同过滤,到现在融合了机器学习甚至是深度学习的混合型推荐,其目标始终如一:更精准、更个性化地为用户推荐内容。随着Python的普及,用它来构建推荐系统成了许多开发者的选择,原因无他,Python生态丰富、易学易用,再加上TensorFlow、PyTorch这样的深度学习框架加持,构建高效推荐模型不再是梦。

案例:深度学习在电影推荐中的应用

想象一下,我们要为一个在线电影平台设计一个推荐系统,让用户发现他们可能爱上的电影。我们选择使用深度神经网络(DNN)来实现这一目标,特别是结合协同过滤的思路。下面就是我们如何通过Python和深度学习打造这一魔法般的体验。

数据准备

首先,我们需要大量的用户行为数据,包括用户对电影的评分、观看历史等。这些数据通常会经过清洗和预处理,以便转换成模型可以理解的格式。利用Pandas库,数据处理变得轻而易举。

模型架构

接下来,我们设计一个双塔模型(Two-Tower Model),这是近年来深度学习推荐系统中非常流行的一种架构。一个塔负责编码用户特征,另一个塔则处理电影特征。两塔通过点积计算相似度,进而预测用户对未观看电影的喜好程度。

  • 用户塔可以接收用户的ID,通过多层嵌入和全连接层,输出用户的向量表示。
  • 电影塔同理,接收电影ID,输出电影的向量表示。

这里,我们可以借助TensorFlow的embedding层和Dense层快速搭建模型。至于模型训练,Adam优化器加上交叉熵损失函数是常见的选择。

实战演练

在实际代码实现过程中,我们使用TensorFlow的数据集API来处理训练数据的批量化和迭代。每一轮训练后,我们通过验证集评估模型表现,并适时保存最优模型,以防过拟合。

目前PlugLink发布了开源版和应用版,开源版下载地址:
Github地址:https://github.com/zhengqia/PlugLink
Gitcode地址:https://gitcode.com/zhengiqa8/PlugLink/overview
Gitee地址:https://gitee.com/xinyizq/PlugLink

应用版下载地址:
链接:https://pan.baidu.com/s/19tinAQNFDxs-041Zn7YwcQ?pwd=PLUG
提取码:PLUG

http://www.lryc.cn/news/390397.html

相关文章:

  • ChatGPT:Java中的对象引用实现方式
  • 云渗透实战手册:云API攻防之云服务端点侦查
  • PHP 爬虫之使用 Curl库抓取淘宝商品列表数据网页的方法
  • Python基础小知识问答系列-可迭代型变量赋值
  • 主流 Canvas 库对比:Fabric.js、Konva.js 和 Pixi.js
  • backbone是什么?
  • 四十篇:内存巨擘对决:Redis与Memcached的深度剖析与多维对比
  • HTML5的多线程技术:Web Worker API
  • Java | Leetcode Java题解之第206题反转链表
  • 660错题
  • GAMES104:04游戏引擎中的渲染系统1:游戏渲染基础-学习笔记
  • Visual Studio 中的键盘快捷方式
  • K8S中的某个容器突然出现内存和CPU占用过高的情况解决办法
  • Pointnet++改进即插即用系列:全网首发GLSA聚合和表示全局和局部空间特征|即插即用,提升特征提取模块性能
  • 如何选择适合自己的虚拟化技术?
  • Spring动态代理详解
  • Java微服务架构中的消息总线设计
  • 51单片机项目-点亮第一个LED灯(涉及:进制转换表、创建项目、生成HEX文件、下载程序到单片机、二极管区分正负极)
  • 安全管理中心测评项
  • word 转pdf 中图片不被压缩的方法
  • Springboot+Vue3开发学习笔记《1》
  • grpc编译
  • echarts-wordcloud:打造个性化词云库
  • VMware虚拟机安装CentOS7.9 Oracle 11.2.0.4 RAC+单节点RAC ADG
  • iOS 视图实现渐变色背景
  • hive命令和参数
  • 『MySQL 实战 45 讲』22 - MySQL 有哪些“饮鸩止渴”提高性能的方法?
  • 创建kset
  • 实战:基于Java的大数据处理与分析平台
  • 构建安全稳定的应用:Spring Security 实用指南