当前位置: 首页 > news >正文

Xilinx FPGA:vivado利用单端RAM/串口传输数据实现自定义私有协议

一、项目要求

       实现自定义私有协议,如:pc端产生数据:02    56    38  ,“02”代表要发送数据的个数,“56”“38”需要写进RAM中。当按键信号到来时,将“56”“38”读出返回给PC端。

二、信号流向图

三、状态转换图

四、程序设计:

按键消抖模块:

`timescale 1ns / 1ps
module key_debounce(input              sys_clk ,input              rst_n   ,input              key     ,output             key_flag );parameter        delay = 100;//_000_0 ; //10msreg[25:0]         cnt               ;always@(posedge sys_clk )if(!rst_n)cnt <= 0 ;else if ( key == 0 )beginif ( cnt == delay - 1 )cnt <= cnt ;elsecnt <= cnt +1 ;endelsecnt <= 0 ;assign  key_flag = ( cnt == delay - 2 )?1:0 ;endmodule

接收端模块:

`timescale 1ns / 1ps
module uart_rx(input                    sys_clk   ,input                    rst_n     ,input                    rx_data   ,output    reg[7:0]       uart_data ,output    reg            rx_done  );parameter               SYSCLK = 50_000_000 ;parameter               Baud   = 115200     ; parameter               COUNT  = SYSCLK/Baud;parameter               MID    = COUNT/2    ;///start_flagreg             rx_reg1 ;reg             rx_reg2 ;wire            start_flag ;always@(posedge sys_clk )if(!rst_n)beginrx_reg1 <= 1 ;rx_reg2 <= 1 ;endelsebeginrx_reg1 <= rx_data  ;rx_reg2 <= rx_reg1  ;endassign  start_flag = ~rx_reg1 & rx_reg2 ;//rx_flagreg               rx_flag  ;reg[4:0]          cnt_bit  ;reg[9:0]          cnt      ;always@(posedge sys_clk )if(!rst_n)rx_flag <= 0 ;else if ( start_flag == 1 )rx_flag <= 1 ;else if ( cnt_bit == 10 && cnt == MID - 1 )rx_flag <= 0 ;elserx_flag <= rx_flag ;cntalways@(posedge sys_clk )if(!rst_n)cnt <= 0 ;else if ( rx_flag == 1 )beginif ( cnt == COUNT - 1 )cnt <= 0 ;elsecnt <= cnt +1 ;endelsecnt <= 0 ;cnt_bitalways@(posedge sys_clk )if(!rst_n)cnt_bit <= 0 ;else if ( rx_flag == 1 )beginif ( cnt == COUNT - 1 )beginif( cnt_bit == 10 )cnt_bit <= 0 ;elsecnt_bit <= cnt_bit +1 ;endelsecnt_bit <= cnt_bit ;endelsecnt_bit <= 0 ;///data_reg                         reg[8:0]         data_reg  ;  //data_reg:01234567 [8]always@(posedge sys_clk )     //cnt_bit:[0]12345678[9][10]if(!rst_n)data_reg <= 0 ;else if ( rx_flag == 1 )beginif ( cnt_bit > 0 && cnt_bit < 10 && cnt == MID - 1)data_reg[cnt_bit - 1 ] <= rx_data  ;elsedata_reg <= data_reg  ;endelsedata_reg <= 0 ;checkreg                  check   ;always@(posedge sys_clk )if(!rst_n)check <= 0 ;else if ( rx_flag == 1 )beginif ( cnt_bit == 10 )check <= ^data_reg  ;elsecheck <= 0 ;endelsecheck <= 0 ;uart_dataparameter            MODE_CHECK = 0 ;always@(posedge sys_clk )if(!rst_n)uart_data <= 0 ;else if ( rx_flag == 1 )beginif ( cnt_bit == 10 && cnt == 10 && check == MODE_CHECK)uart_data <= data_reg[7:0] ;elseuart_data <= uart_data  ;endelseuart_data <= uart_data  ;rx_donealways@(posedge sys_clk )if(!rst_n)rx_done <= 0 ;else if ( rx_flag == 1 )beginif ( cnt_bit == 10 && cnt == MID/2 - 1 )rx_done <= 1 ;elserx_done <= 0 ;endelserx_done <= 0 ;//做测试用的 
// wire          tx_done     ;          
// wire          tx_data     ;         
// uart_tx uart_tx_u1(
//                       .    sys_clk   (sys_clk )    ,
//                       .    rst_n     (rst_n   )    ,
//                       .    ram_out   (uart_data )    , //uart_data(douta)
//                       .    tx_start  (rx_done)    , //rx_done
//                       .    tx_done   (tx_done )     ,
//                       .    tx_data   (tx_data )
//    );         endmodule

发送端模块:

`timescale 1ns / 1ps
module uart_tx(input                 sys_clk   ,input                 rst_n     ,input     [7:0]       ram_out   , //uart_data(douta)input                 tx_start  , //rx_doneoutput    reg         tx_done    ,output    reg         tx_data );parameter             SYSCLK = 50_000_000  ;parameter             Baud   = 115200      ;parameter             COUNT  = SYSCLK/Baud ;parameter             MID    = COUNT/2     ;//start_flagreg               tx_reg1    ;reg               tx_reg2    ;wire              start_flag ;always@(posedge sys_clk )if(!rst_n)begintx_reg1 <= 0 ;tx_reg2 <= 0 ;endelsebegintx_reg1 <= tx_start ;tx_reg2 <= tx_reg1  ;endassign  start_flag = tx_reg1 & ~tx_reg2  ;///tx_flagreg                   tx_flag  ;reg[9:0]              cnt      ;reg[4:0]              cnt_bit  ;always@(posedge sys_clk )if(!rst_n)     tx_flag <= 0 ;else if ( start_flag == 1 )tx_flag <= 1 ;else if ( cnt_bit == 10 && cnt == COUNT -1 )
//          else if ( cnt_bit == 10 && cnt == MID -1 )tx_flag <= 0 ;elsetx_flag <= tx_flag ;cntalways@(posedge sys_clk )if(!rst_n)cnt <= 0 ;else if ( tx_flag == 1 )beginif ( cnt == COUNT - 1 )cnt <= 0 ;elsecnt <= cnt +1 ;endelsecnt <= 0 ;//cnt_bitalways@(posedge sys_clk )if(!rst_n)cnt_bit <= 0 ;else if ( tx_flag == 1 )beginif ( cnt == COUNT - 1 )beginif ( cnt_bit == 10 )cnt_bit <= 0 ;elsecnt_bit <= cnt_bit +1 ;endelsecnt_bit <= cnt_bit  ;endelsecnt_bit <= 0 ;///tx_dataparameter            MODE_CHECK = 0 ;always@( posedge sys_clk )if(!rst_n)tx_data <= 1 ;else if ( tx_flag == 1 )beginif ( cnt_bit > 0 && cnt_bit < 9 )tx_data <= ram_out[cnt_bit -1]  ;else if ( cnt_bit == 0 )tx_data <= 0 ;else if ( cnt_bit == 9 ) tx_data <= ( MODE_CHECK == 0 )? ^ram_out :~^ram_out ;else if ( cnt_bit == 10 )tx_data <= 1 ;elsetx_data <= tx_data  ;endelsetx_data <= 1 ;//tx_done always@(posedge sys_clk )if(!rst_n)tx_done <= 0 ;else if ( tx_flag == 1 )beginif ( cnt_bit == 10 && cnt == COUNT - 1 )
//               if ( cnt_bit == 10 && cnt == MID/2 - 1 )tx_done <= 1 ;elsetx_done <= 0 ;endelsetx_done <= 0 ;endmodule

RAM模块:

`timescale 1ns / 1ps
module private_ram_ctrl(input                 sys_clk     ,input                 rst_n       ,input                 key_flag    ,input    [7:0]        uart_data   ,input                 rx_done     ,input                 tx_done     ,output   reg[7:0]     ram_out     ,     output   reg          tx_start       );reg              wea       ;reg[3:0]         addra     ;reg[7:0]         dina      ;wire[7:0]        douta     ;//状态机localparam             IDLE    =  3'd0  ;localparam             WR_D    =  3'd1  ;localparam             WAIT    =  3'd2  ;localparam             TX_FIR  =  3'd3  ;localparam             TX_D    =  3'd4  ;reg[2:0]               cur_state     ;reg[2:0]               next_state    ;reg[7:0]               wr_len         ;reg[7:0]               wr_cnt         ;always@(posedge sys_clk )if(!rst_n)cur_state <= IDLE  ;else cur_state <= next_state ;always@(*)case(cur_state)IDLE     : beginif (rx_done)//指令数据的接收完成信号next_state = WR_D ;elsenext_state = cur_state ;endWR_D     :beginif( wr_len == wr_cnt )next_state = WAIT  ;elsenext_state = cur_state ;endWAIT     :beginif( key_flag )next_state = TX_FIR  ;elsenext_state = cur_state ;endTX_FIR   :beginnext_state = TX_D  ;endTX_D     :beginif ( wr_len == wr_cnt )next_state = IDLE ;elsenext_state = cur_state  ;enddefault:;endcasealways@(posedge sys_clk )if(!rst_n)beginwr_len <= 0 ;wr_cnt <= 0 ;wea    <= 0 ;addra  <= 4'hf ;利用溢出功能   15dina   <= 0 ;tx_start <= 0 ;ram_out <= 0 ; ///ram_out <= doutaendelsecase(cur_state)IDLE  : beginwr_len <= 0 ;   wr_cnt <= 0 ;   wea    <= 0 ;  dina   <= 0 ; addra  <= 4'hf ;tx_start <= 0 ;if(rx_done)wr_len <= uart_data ;elsewr_len <= wr_len  ;end  WR_D  :begintx_start <= 0 ;if ( rx_done )beginaddra <= addra +1 ;wea <= 1 ;wr_cnt <= wr_cnt +1 ;dina <= uart_data ;endelsewea <= 0 ;//其他的不用写会自动保持endWAIT  :begintx_start <= 0 ;addra <= 0 ;//保证发送数据的时候是从0开始发的dina  <= 0 ;wr_cnt <= 0 ;endTX_FIR:  //只待一个时钟周期begintx_start <= 1 ;addra <= addra + 1 ; //addra从0开始加wr_cnt <= wr_cnt +1 ;ram_out <= douta  ;endTX_D  :beginif(tx_done)begintx_start <= 1 ;addra <= addra +1 ;wr_cnt <= wr_cnt +1; ram_out <= douta  ;endelsetx_start <= 0 ;enddefault:;endcasesingle_ram your_instance_name (.clka(sys_clk),    // input wire clka.wea(wea),      // input wire [0 : 0] wea.addra(addra),  // input wire [3 : 0] addra.dina(dina),    // input wire [7 : 0] dina.douta(douta)  // output wire [7 : 0] douta
);
endmodule

顶层模块:

`timescale 1ns / 1ps
module TOP(input                sys_clk ,input                rst_n   ,input                key     ,input                rx_data ,output               tx_data );///key_debouncewire              key_flag  ;key_debounce  key_debounce_u1(.   sys_clk   (sys_clk )    ,.   rst_n     (rst_n   )    ,.   key       (key     )    ,.   key_flag  (key_flag)     );//private_ram_ctrlwire[7:0]           uart_data   ;wire                rx_done     ;wire                tx_done     ;wire[7:0]           ram_out     ;  wire                tx_start    ;private_ram_ctrl private_ram_ctrl_u1(.    sys_clk   (sys_clk  )  ,.    rst_n     (rst_n    )  ,.    key_flag  (key_flag )  ,.    uart_data (uart_data)  ,.    rx_done   (rx_done  )  ,.    tx_done   (tx_done  )  ,.    tx_start (tx_start)   ,.    ram_out   (ram_out  )       );/uart_rxuart_rx uart_rx_u2(.    sys_clk   (sys_clk  )  , .    rst_n     (rst_n    )  , .    rx_data   (rx_data  )  , .    uart_data (uart_data)  , .    rx_done   (rx_done  )  ); uart_txuart_tx  uart_tx_u1(.    sys_clk  (sys_clk ), //sys_clk  ,.    rst_n    (rst_n   ), //rst_n    ,.    ram_out  (ram_out ), //ram_out  , //uart_data(douta).    tx_start (tx_start), //tx_start , //rx_done.    tx_done  (tx_done ), //tx_done   ,.    tx_data  (tx_data ) //tx_data );endmodule

五、仿真结果

仿真uart_rx模块:

`timescale 1ns / 1ps
module test_uart_rx( );reg                    sys_clk   ;reg                    rst_n     ;reg                    rx_data   ;wire[7:0]              uart_data ;wire                   rx_done   ;parameter               SYSCLK = 50_000_000 ;parameter               Baud   = 115200     ;parameter               COUNT  = SYSCLK/Baud;parameter               MID    = COUNT/2    ;initialbeginsys_clk = 0 ;rst_n   = 0 ;#10rst_n   = 1 ;endalways  #1  sys_clk = ~sys_clk ;initialbeginuart_out ( 8'hCC );uart_out ( 8'hC8 );uart_out ( 8'h18 );uart_out ( 8'h78 );uart_out ( 8'h66 );uart_out ( 8'h1E );uart_out ( 8'hCC );uart_out ( 8'h9F );uart_out ( 8'h66 );uart_out ( 8'h9F );uart_out ( 8'h33 );uart_out ( 8'h1E );uart_out ( 8'hCC );uart_out ( 8'h9F );uart_out ( 8'h18 );uart_out ( 8'h33 );uart_out ( 8'hCC );end//任务函数task            uart_out  ;input    [8:0]    DATA   ;beginrx_data = 1 ; ///空闲位初始#20rx_data = 0 ;#(COUNT*2)    rx_data = DATA[0]  ;#(COUNT*2)    rx_data = DATA[1]  ;#(COUNT*2)    rx_data = DATA[2]  ;#(COUNT*2)    rx_data = DATA[3]  ;#(COUNT*2)    rx_data = DATA[4]  ;#(COUNT*2)    rx_data = DATA[5]  ;#(COUNT*2)    rx_data = DATA[6]  ;#(COUNT*2)    rx_data = DATA[7]  ;#(COUNT*2)    rx_data = 0        ;#(COUNT*2)    rx_data = 1        ;#(COUNT*2)                       ;endendtaskuart_rx  uart_rx_u1(.       sys_clk   (sys_clk  ) ,.       rst_n     (rst_n    ) ,.       rx_data   (rx_data  ) ,.       uart_data (uart_data) ,.       rx_done   (rx_done  ));
endmodule

仿真TOP模块:

`timescale 1ns / 1ps
module test_TOP( );reg                sys_clk    ;reg                rst_n      ;reg                key        ;reg                rx_data    ;wire               tx_data    ;parameter               SYSCLK = 50_000_000 ;parameter               Baud   = 115200     ;parameter               COUNT  = SYSCLK/Baud;parameter               MID    = COUNT/2    ;initialbeginsys_clk = 0 ;rst_n   = 0 ;key     = 1 ;#10rst_n   = 1 ;#200000//ns   200uskey     = 0 ;
//                  #200000
//                  key     = 1 ;
//                  #200000
//                  key     = 0 ;
//                  #200000
//                  key     = 1 ;endalways  #1  sys_clk = ~sys_clk ;initialbegin
//                  uart_out ( 8'hf  );//0f   0000_1111
//                  uart_out ( 8'h0f );
//                  uart_out ( 8'hff );uart_out ( 8'h0f  );uart_out ( 8'h33  );
//                  uart_out ( 8'hff );//1111_1111uart_out ( 8'h18 );//0001_1000uart_out ( 8'h78 );uart_out ( 8'h66 );uart_out ( 8'h1E );uart_out ( 8'hCC );uart_out ( 8'h9F );uart_out ( 8'h66 );uart_out ( 8'h9F );uart_out ( 8'h33 );uart_out ( 8'h1E );uart_out ( 8'hCC );uart_out ( 8'h9F );uart_out ( 8'h18 );uart_out ( 8'h33 );end//任务函数task            uart_out  ;input    [8:0]    DATA   ;beginrx_data = 1 ; ///空闲位初始#20rx_data = 0 ;#(COUNT*2)    rx_data = DATA[0]  ;#(COUNT*2)    rx_data = DATA[1]  ;#(COUNT*2)    rx_data = DATA[2]  ;#(COUNT*2)    rx_data = DATA[3]  ;#(COUNT*2)    rx_data = DATA[4]  ;#(COUNT*2)    rx_data = DATA[5]  ;#(COUNT*2)    rx_data = DATA[6]  ;#(COUNT*2)    rx_data = DATA[7]  ;#(COUNT*2)    rx_data = 0        ;#(COUNT*2)    rx_data = 1        ;#(COUNT*2)                       ;endendtaskTOP  TOP_u1(.   sys_clk (sys_clk)  ,.   rst_n   (rst_n  )  ,.   key     (key    )  ,.   rx_data (rx_data)  ,.   tx_data (tx_data)  );endmodule

这里记录一些小小的问题:

(1)

仿真的复位信号一定不要和数据的关键信号(使能/开始)重复。

这个是正常没重复的:

这个是由于复位拉高的时间过长造成重复了的:

(2)

因此我们可以做出如下的修改:

现在就正常了

http://www.lryc.cn/news/389759.html

相关文章:

  • Spark on k8s 源码解析执行流程
  • 粤港联动,北斗高质量国际化发展的重要机遇
  • Chrome导出cookie的实战教程
  • 视频文字转语音经验笔记
  • 视频融合共享平台LntonCVS统一视频接入平台智慧安防应用方案
  • 使用Python绘制动态螺旋线:旋转动画效果
  • Symfony实战手册:PHP框架的高级应用技巧
  • TOGAF培训什么内容?参加TOGAF培训有什么好处?考试通过率多少?
  • keepalived HA nginx方案
  • 报错:pathspec ‘xxx‘ did not match any file(s) known to git
  • sed 保持空间命令之 x 的执行逻辑
  • 按位异或^
  • 《企业实战分享 · 常用运维中间件》
  • PyCharm 2024.1简介
  • 终身免费的Navicat数据库,不需要破解,官方支持
  • Spring Boot中的模板引擎选择与配置
  • 4、音视频封装格式---FLV
  • vscode 前行复制到下一行
  • 什么是文档透明加密|好用的文档透明加密软件有哪些?
  • XTDrone-固定翼无人机编队跟踪无人车-配置教程
  • 实现高性能、可扩展的实时数据采集系统:go-zero的应用与实践
  • AUTOSAR NvM模块(五)
  • 输出feign调用详细日志
  • mac编译r2frida问题解决
  • 中介者模式在金融业务中的应用及其框架实现
  • javaSE期末练习题
  • Linux文件数据写入
  • vue2 中如何使用 vuedraggable 库实现拖拽功能
  • 0基础学C++ | 第13天 | 基础知识 | 类 | 对象
  • Java | Leetcode Java题解之第212题单词搜索II