当前位置: 首页 > news >正文

数据结构 | 栈与队列

 🔥Go for it!🔥
📝个人主页:按键难防
📫 如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀

📖系列专栏:数据结构与算法
🔥 如果感觉博主的文章还不错的话,还请 点赞👍🏻收藏⭐️ + 留言📝​支持 一下博主哦

目录

栈:

顺序存储实现栈:

 判断栈是否为空:

入栈操作:

出栈(弹栈)操作:

读取栈顶元素:

汇总:

队列:

 循环队列(数组实现):

 定义方法:

循环队列入队:

循环队列出队:

汇总:

链式存储实现队列:

定义方法

初始化头尾指针:

入队:

出队:

汇总:


栈:

栈(stack)是一个特殊的线性表,是限定仅在一端(通常是表尾)进行插入和删除操作的线性表。又称为后进先出(Last In First Out)的线性表,简称 LIFO 结构。

特点:

后进先出,先进者后出。

顺序存储实现栈:

#define MaxSize 50 //定义栈的长度
typedef int ElemType;//重定义栈中每个元素的类型,便于修改
typedef struct{ElemType data[MaxSize];//数组int top;//始终指向栈顶的一个变量
}SqStack;
SqStack S;

栈顶(Top):线性表允许进行插入删除的那一端。
栈底(Bottom):固定的,不允许进行插入和删除的另一端。
空栈:不含任何元素的空表。

基本操作:

 判断栈是否为空:

void InitStack(SqStack &S)//初始化栈
{S.top = -1;//让栈为空就是初始化栈
}
bool StackEmpty(SqStack &S)//验证是否初始化成功
{if (S.top == -1){return true;}else{return false;}
}

入栈操作:

前置++,既实现先扩容,又解决了元素入栈。

//入栈
bool Push(SqStack &S, ElemType x)
{if (S.top == MaxSize - 1)//数组的大小不能改变,避免访问越界{return false;}S.data[++S.top] = x;{return true;}
}

出栈(弹栈)操作:

后置--,先元素出栈,后减容。

//弹出栈顶元素(出栈)
bool Pop(SqStack &S, ElemType &x)
{if (-1 == S.top)return false;x = S.data[S.top--];//后减减,x=S.data[S.top];S.top=S.top-1;{return true; }
}

读取栈顶元素:

//读取栈顶元素
bool GetTop(SqStack &S, ElemType &x)
{if (-1 == S.top)//说明栈为空{return false;}x = S.data[S.top];{return true;}
}

汇总:

初始化栈,判断栈是否为空,压栈,获取栈顶元素,弹栈。注意 S.top 为-1 时,代表栈为空。

#include <stdio.h>
#include <stdlib.h>
#define MaxSize 50
typedef int ElemType;
typedef struct{ElemType data[MaxSize];//数组int top;
}SqStack;
void InitStack(SqStack &S)
{S.top = -1;//代表栈为空
}
bool StackEmpty(SqStack &S)
{if (S.top == -1){return true;}else{return false;}
}
//入栈
bool Push(SqStack &S, ElemType x)
{if (S.top == MaxSize - 1)//数组的大小不能改变,避免访问越界{return false;}S.data[++S.top] = x;{return true;}
}
//读取栈顶元素
bool GetTop(SqStack &S, ElemType &x)
{if (-1 == S.top)//说明栈为空{return false;}x = S.data[S.top];{return true;}
}
//弹出栈顶元素(出栈)
bool Pop(SqStack &S, ElemType &x)
{if (-1 == S.top)return false;x = S.data[S.top--];//后减减,x=S.data[S.top];S.top=S.top-1;{return true; }
}
//实现栈 可以用数组,也可以用链表,我们这里使用数组
int main()
{SqStack S;//先进后出 FILO LIFObool flag;ElemType m;//用来存放拿出的元素InitStack(S);//初始化flag = StackEmpty(S);//验证是否初始化成功if (flag){printf("栈是空的\n");}Push(S, 3);//入栈元素 3Push(S, 4);//入栈元素 4Push(S, 5);flag = GetTop(S, m);//获取栈顶元素if (flag){printf("获取栈顶元素为 %d\n", m);}flag = Pop(S, m);//弹出栈顶元素(出栈)if (flag){printf("弹出元素为 %d\n", m);}return 0;
}

队列:

队列(Queue)简称队,也是一种操作受限的线性表,只允许在表的一端进行插入,而在表的另一端进行删除。向队列中插入元素称为入队或进队;删除元素称为出队或离队。

特点:

先进先出。

 循环队列(数组实现):

 定义方法:

#define MaxSize 5
typedef int ElemType;
typedef struct{ElemType data[MaxSize];//数组,存储MaxSize-1个元素int front, rear;//队列头 队列尾
}SqQueue;
SqQueue Q;
front和rear都是下标
判断队列为空:front和rear指向同一个单元,且都是0
Q.front==Q.rear
判断队列满:front和rear中间空一个单元
(Q.rear+1)%MaxSize==Q.front
Q.rear+1为容量,如果%MaxSize=0(Q.front),那么队列满

循环队列入队:

bool EnQueue(SqQueue &Q, ElemType x)
{if ((Q.rear + 1) % MaxSize == Q.front) //判断是否队满return false;Q.data[Q.rear] = x;//放入元素Q.rear = (Q.rear + 1) % MaxSize;//改变队尾标记,% MaxSize防止超出容量return true;
}

循环队列出队:

bool DeQueue(SqQueue &Q, ElemType &x)
{if (Q.rear == Q.front)//判断是否队为空return false;x = Q.data[Q.front];//先进先出Q.front = (Q.front + 1) % MaxSize;//改变队头标记,% MaxSize防止超出容量return true;
}

汇总:

#include <stdio.h>
#include <stdlib.h>
#define MaxSize 5
typedef int ElemType;
typedef struct{ElemType data[MaxSize];//数组,存储 MaxSize-1 个元素int front, rear;//队列头 队列尾
}SqQueue;
void InitQueue(SqQueue &Q)
{Q.rear = Q.front = 0;
}
//判空
bool isEmpty(SqQueue &Q)
{if (Q.rear == Q.front)//不需要为零{return true;}else{return false;}
}
//入队
bool EnQueue(SqQueue &Q, ElemType x)
{if ((Q.rear + 1) % MaxSize == Q.front) //判断是否队满{return false;}Q.data[Q.rear] = x;//3 4 5 6Q.rear = (Q.rear + 1) % MaxSize;{return true;}
}
//出队
bool DeQueue(SqQueue &Q, ElemType &x)
{if (Q.rear == Q.front){return false;}x = Q.data[Q.front];//先进先出Q.front = (Q.front + 1) % MaxSize;{return true;}
}
int main()
{SqQueue Q;bool ret;//存储返回值ElemType element;//存储出队元素InitQueue(Q);ret = isEmpty(Q);if (ret){printf("队列为空\n");}else{printf("队列不为空\n");}EnQueue(Q, 3);EnQueue(Q, 4);EnQueue(Q, 5);ret = EnQueue(Q, 6);ret = EnQueue(Q, 7);if (ret){printf("入队成功\n");}else{printf("入队失败\n");}ret = DeQueue(Q, element);if (ret){printf("出队成功,元素值为 %d\n", element);}else{printf("出队失败\n");}ret = DeQueue(Q, element);if (ret){printf("出队成功,元素值为 %d\n", element);}else{printf("出队失败\n");}ret = EnQueue(Q, 8);if (ret){printf("入队成功\n");}else{printf("入队失败\n");}return 0;
}

链式存储实现队列:

定义方法:

typedef int ElemType;
typedef struct LinkNode
{//创建结点ElemType data;struct LinkNode *next;
}LinkNode;
typedef struct
{LinkNode *front, *rear;//结构体,用于存放链表头结点和链表尾结点的指针
}LinkQueue;//先进先出
LinkQueue Q;

相对于原有编写的链表增加了尾指针


初始化头尾指针:

void InitQueue(LinkQueue &Q) //初始化头尾指针
{Q.front = Q.rear = (LinkNode*)malloc(sizeof(LinkNode));//为头结点申请空间//初始化时头尾指针都指向这一头结点Q.front->next = NULL;//头结点的next指针为 NULL
}
bool IsEmpty(LinkQueue Q)
{if (Q.front == Q.rear)return true;elsereturn false;
}

入队:

用链表的尾插法进行入队

44d56d1b9ad84b564a33cc8a502ae699.jpeg 

//入队,尾部插入法
void EnQueue(LinkQueue &Q, ElemType x)
{LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode));//为入队的元素申请空间s->data = x; s->next = NULL;//新申请的结点作为最后一个结点Q.rear->next = s;//先让前一结点(Q.rear)的指针域指向新插入的结点Q.rear = s;//然后再让Q.rear变为指向尾部的那个结点
}

出队:

头部删除法,删除某一节点

//出队 
bool DeQueue(LinkQueue &Q, ElemType &x)
{if (Q.front == Q.rear) {return false;//队列为空}LinkNode *p = Q.front->next;//front始终指向头结点,但头结点什么都没存,所以头结点的下一个节点才有数据x = p->data;Q.front->next = p->next;//断链,保留第一个结点的指针域,让头节点指向第二个结点if (Q.rear == p)//如果这个队列没有第二个结点,也就是p->next为NULLQ.rear = Q.front;//那直接让队列置为空free(p);//销毁动态内存return true;
}

汇总:

#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct LinkNode{ElemType data;struct LinkNode *next;
}LinkNode;
typedef struct
{LinkNode *front, *rear;//结构体,用于存放链表头和链表尾的指针
}LinkQueue;//先进先出
void InitQueue(LinkQueue &Q) //初始化头尾指针
{Q.front = Q.rear = (LinkNode*)malloc(sizeof(LinkNode));//为头结点申请空间//头尾指针都指向这一头结点Q.front->next = NULL;//头结点的next指针为 NULL
}
bool IsEmpty(LinkQueue Q)
{if (Q.front == Q.rear)return true;elsereturn false;
}
//入队,尾部插入法
void EnQueue(LinkQueue &Q, ElemType x)
{LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode));//为入队的元素申请空间s->data = x; s->next = NULL;Q.rear->next = s;//rear 始终指向尾部Q.rear = s;
}
//出队 头部删除法
bool DeQueue(LinkQueue &Q, ElemType &x)
{if (Q.front == Q.rear) return false;//队列为空LinkNode *p = Q.front->next;//头结点什么都没存,所以头结点的下一个节点才有数据x = p->data;Q.front->next = p->next;//断链if (Q.rear == p)//删除的是最后一个元素Q.rear = Q.front;//队列置为空free(p);return true;
}
int main()
{LinkQueue Q;bool ret;ElemType element;//存储出队元素InitQueue(Q);//初始化队列EnQueue(Q, 3);EnQueue(Q, 4);EnQueue(Q, 5);EnQueue(Q, 6);EnQueue(Q, 7);ret = DeQueue(Q, element);if (ret){printf("出队成功,元素值为 %d\n", element);}else{printf("出队失败\n");}return 0;
}

http://www.lryc.cn/news/3869.html

相关文章:

  • Redux 源码分析
  • 第五十二章 BFS进阶(二)——双向广搜
  • 业务建模题
  • 电子秤专用模拟数字(AD)转换器芯片HX711介绍
  • 微服务 RocketMQ-延时消息 消息过滤 管控台搜索问题
  • js发送邮件(node.js)
  • English Learning - Day58 一周高频问题汇总 2023.2.12 周日
  • 【微电网】基于风光储能和需求响应的微电网日前经济调度(Python代码实现)
  • 四种方式的MySQL安装
  • 软考高级信息系统项目管理师系列之九:项目范围管理
  • 【项目精选】javaEE健康管理系统(论文+开题报告+答辩PPT+源代码+数据库+讲解视频)
  • ctfshow nodejs
  • 无线传感器原理及方法|重点理论知识|2021年19级|期末考试
  • 带你写出符合 Promise/A+ 规范 Promise 的源码
  • 回流与重绘
  • openpyxl表格的简单实用
  • 【寒假day4】leetcode刷题
  • 【竞赛题】6355. 统计公平数对的数目
  • Redis集群搭建(主从、哨兵、分片)
  • Dart语法基础补充
  • Nginx - 深入理解nginx的处理请求、进程关系和配置文件重载
  • 华为OD机试 - 服务依赖(Python)| 真题含思路
  • html的表单标签(form)
  • 手把手教你部署ruoyi前后端分离版本
  • JUC并发编程 Ⅱ -- 共享模型之管程(上)
  • File类
  • ModSecurity规则功能说明
  • 医学生考研考博太卷,一篇文章轻松助力上岸(一)
  • 操作系统(一): 进程和线程,进程的多种状态以及进程的调度算法
  • 【随笔】我迟到的2022年度总结:突破零粉丝,1个月涨粉1000+,2023年目标3万+