当前位置: 首页 > news >正文

Tensorflow入门实战 T06-Vgg16 明星识别

目录

1、前言

2、 完整代码

3、运行过程+结果

4、遇到的问题

5、小结


  • 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

1、前言

这周主要是使用VGG16模型,完成明星照片识别。

2、 完整代码

from keras.utils import losses_utils
from tensorflow import keras
from keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from keras.callbacks import ModelCheckpoint, EarlyStoppinggpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0], "GPU")# 导入数据
data_dir = "/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p06_vgg16/data"
data_dir = pathlib.Path(data_dir)# 查看数据
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)  # 1800roses = list(data_dir.glob('Jennifer Lawrence/*.jpg'))
img = PIL.Image.open(str(roses[0]))
# img.show()  # 查看图片# 数据预处理
# 1、加载数据
batch_size = 32
img_height = 224
img_width = 224print('data_dir======>',data_dir)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="training",label_mode="categorical",seed=123,image_size=(img_height, img_width),batch_size=batch_size)"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.1,subset="validation",label_mode="categorical",seed=123,image_size=(img_height, img_width),batch_size=batch_size)class_names = train_ds.class_names
print(class_names)# 可视化数据
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[np.argmax(labels[i])])plt.axis("off")
plt.show()# 再次检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape)   # (32, 224, 224, 3)print(labels_batch.shape)   # (32, 17)break# 配置数据集
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)# 构建CNN网络
"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),  # 卷积层1,卷积核3*3layers.AveragePooling2D((2, 2)),  # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),  # 池化层2,2*2采样layers.Dropout(0.5),layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.AveragePooling2D((2, 2)),layers.Dropout(0.5),layers.Conv2D(128, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.5),layers.Flatten(),  # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),  # 全连接层,特征进一步提取layers.Dense(len(class_names))  # 输出层,输出预期结果
])# model.summary()  # 打印网络结构# 训练模型
# 1、设置动态学习率
# 设置初始学习率
initial_learning_rate = 1e-4lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate,decay_steps=60,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 损失函数
# 调用方式1:
model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])# 调用方式2:
# model.compile(optimizer="adam",
#               loss=tf.keras.losses.CategoricalCrossentropy(),
#               metrics=['accuracy'])# sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)
# 调用方式1:
model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])
# ↑↑↑↑这里出现报错,需要将 sparse_categorical_crossentropy  改成→  categorical_crossentropy↑↑
# 调用方式2:
# model.compile(optimizer="adam",
#               loss=tf.keras.losses.SparseCategoricalCrossentropy(),
#               metrics=['accuracy'])# 函数原型
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False,reduction=losses_utils.ReductionV2.AUTO,name='sparse_categorical_crossentropy'
)epochs = 100# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',min_delta=0.001,patience=20,verbose=1)# 网络模型训练
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])# 模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()# 指定图片进行预测
# 加载效果最好的模型权重
model.load_weights('best_model.h5')from PIL import Image
import numpy as npimg = Image.open("/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p06_vgg16/data/Jennifer Lawrence/003_963a3627.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

3、运行过程+结果

【查看图片】

【模型运行过程---第21epoch就早停了】

【训练精度、损失-----显然结果很很差】

4、遇到的问题

① 在运行代码的时候遇到报错:

错误:Graph execution error: Detected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):

出现这个问题来自我们使用的损失函数。

model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

解决办法:

将损失函数里面的loss='sparse_categorical_crossentropy' 改成 'categorical_crossentropy',即可解决报错问题。

关于sparse_categorical_crossentropy和categorical_crossentropy的更多细节,详细参考这篇博文:交叉熵损失_多分类交叉熵损失函数-CSDN博客

5、小结

原始模型,跑出来效果很差很差!!!

(1)将原来的Adam优化器换成SGD优化器,效果如下:

(2)后续再补充,最近在写结课论文,有些忙。

http://www.lryc.cn/news/386579.html

相关文章:

  • SpringBoot 3.3.1 + Minio 实现极速上传和预览模式
  • Linux: network: 丢包分析的另一个途径 tracing
  • 【保姆级教程+配置源码】在VScode配置C/C++环境
  • Qt creator实现一个简单计算器
  • Java代码基础算法练习-计算被 3 或 5 整除数之和-2024.06.29
  • Socket编程详解(二)核心代码讲解
  • (项目实战)聚合支付系统开发环境搭建-基于VMware17安装Centos7.9
  • Python现在可以在线编程了!
  • ThreadPoolExecutor线程池创建线程
  • 畅谈GPT-5
  • 石家庄高校大学智能制造实验室数字孪生可视化系统平台项目验收
  • WLAN 4-Way Handshake如何生成GTK?
  • Qt/C++模拟鼠标键盘输入
  • OpenGL3.3_C++_Windows(22)
  • electron-builder 打包过慢解决
  • leetcode226反转二叉树
  • 【自然语言处理系列】探索NLP:使用Spacy进行分词、分句、词性标注和命名实体识别,并以《傲慢与偏见》与全球恐怖活动两个实例文本进行分析
  • 【Rust】function和methed的区别
  • python基础语法 003-4 数据类型集合
  • Vue如何引用组件
  • vue3中省市区联动在同一个el-form-item中咋么设置rules验证都不为空的效果
  • 如何集成CppCheck到visual studio中
  • GWO-CNN-SVM,基于GWO灰狼优化算法优化卷积神经网络CNN结合支持向量机SVM数据分类(多特征输入多分类)
  • Go-知识测试-工作机制
  • 【小程序静态页面】猜拳游戏大转盘积分游戏小程序前端模板源码
  • JupyterServer配置
  • 信息检索(57):MINIMIZING FLOPS TO LEARN EFFICIENT SPARSE REPRESENTATIONS
  • Python 面试【中级】
  • [Open-source tool]Uptime-kuma的簡介和安裝於Ubuntu 22.04系統
  • 【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 灰度图像恢复(100分) - 三语言AC题解(Python/Java/Cpp)