当前位置: 首页 > news >正文

图论·多源最短路径Floyddijsktra

例题地址

多源最短路径

  • 多个源点多个终点
  • 可以使用Floyd算法直接求各源点到终点的最短距离,也可以直接多次使用dijsktra算法求单源点到终点的最短距离

Floyd算法

使用条件

  • 多源最短路径
  • 权值正负皆可

核心思想:动态规划

  • 子问题
    • 设(A,B)表示顶点A,B之间的距离,则有可能(A,B)=(A,C)+(C,B),这说明AB之间的距离可以继续分解为AC,CB之间的距离问题,我们可以找到一个子问题,而这就体现了动态规划的思想
  • 定义dp数组
    • 因为从存储上来讲,我们需要利用邻接矩阵,所以AB间的最短距离表示至少需要两个维度i和j,所以dp数组至少有两个维度。
    • 又因为从子问题的角度,我们分解问题的出发点是找一个中间结点,比较AB的最短距离经过中间结点C会不会更短。所以定义一个新的维度k,其含义是考虑下标从1开始到k结束的k个顶点是否应该加入到路径中去。(这个定义有鲜明的dp特色,学过dp应该不难理解)
      因此dp数组的定义如下dp[i][j][k],表示考虑下标1~k的k个顶点的 i到j的最短距离
  • 递推公式:
    • 根据定义,不难想到,递推公式就是是否应该将下标为k的结点是否值得加入到路径中去
    • 不加入k结点:dp[i][j][k - 1] (言外之意就是i和j已经连通,加入k结点不值得)
    • 加入k结点:dp[i][k][k - 1] + dp[k][j][k - 1]
    • 完整公式:dp[i][j][k] = min(dp[i][j][k - 1], dp[i][k][k - 1] + dp[k][j][k - 1]);
  • 初始化:
    • 处理输入时,要考虑k这个维度应该怎么设置。一种简单的想法是,把k设置无关紧要或者无意义的数值(根据不同题目需要可能是INT_MAX/INT_MIN/0),这里设置为0 dp[u][v][0] = w;
  • 遍历顺序:
    • 其实这个很简单,根据递推公式,dp[i][j][k-1]中k-1个维度的数据必须知道,否则会造成无意义的更新,所以k必须在外层循环

个人代码

using namespace std;
using ll = long long;
int n, m, u, v, w,q,start,ed;
void solve() {cin >> n >> m;vector < vector<vector<int>>>dp(n + 1, vector<vector<int>>(n + 1, vector<int>(n + 1, 10009)));//dp数组while (m--) {cin >> u >> v >> w;dp[u][v][0] = w;dp[v][u][0] = w;}for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {dp[i][j][k] = min(dp[i][j][k - 1], dp[i][k][k - 1] + dp[k][j][k - 1]);}}}cin >> q;while (q--) {cin >> start >> ed;cout << (dp[start][ed][n] == 10009 ? -1 : dp[start][ed][n])<<endl;}
}
int main() {std::ios::sync_with_stdio(false);std::cin.tie(0); std::cout.tie(0);solve();return 0;
}

注意事项

+dp数组不应该设置为最大值INT_MAX,否则会相加溢出导致数据异常
vector < vector<vector<int>>>dp(n + 1, vector<vector<int>>(n + 1, vector<int>(n + 1, 10009)));

空间优化版

  • 直接删去了k这一个维度,因为利用更新后的数据(第k层的)dp[i][k] + dp[k][j]更新自己同一层(第k层的)数据,也能得到正确结果
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
int n, m, u, v, w,q,start,ed;
void solve() {cin >> n >> m;vector < vector<int>>dp(n + 1,vector<int>(n+1,10009));//dp数组while (m--) {cin >> u >> v >> w;dp[u][v] = w;dp[v][u] = w;}for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);}}}cin >> q;while (q--) {cin >> start >> ed;cout << (dp[start][ed] == 10009 ? -1 : dp[start][ed])<<endl;}
}
int main() {std::ios::sync_with_stdio(false);std::cin.tie(0); std::cout.tie(0);solve();return 0;
}

多次使用dijsktra算法

核心思路

  • 将dijsktra定义为函数
  • 传入dist数组的拷贝(没有&引用)作参数,传入st,ed分别作为源点和终点,在函数内初始化dist数组

个人代码

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
int n, m, s, e, v,q,st,ed;//s=u,e=v,v=w;
void dijkstra(vector<vector<int>>&grid, vector<bool>visited, vector<int>dist,int st,int ed) {
//vector<bool>visited和vector<int>dist一定不能传入引用的形式!dist[st]=0;//一定要在这里初始化dist[st]for (int i = 1; i <= n - 1; i++) {int temp = INT_MAX;int cur = 0;for (int j = 1; j <= n; j++) {if (!visited[j] && dist[j] < temp) {temp = dist[j];cur = j;}}visited[cur] = true;for (int j = 1; j <= n; j++) {if (grid[cur][j] != INT_MAX && !visited[j] && dist[cur] + grid[cur][j] < dist[j]) {dist[j] = dist[cur] + grid[cur][j];}}}cout << (dist[ed] == INT_MAX ? -1 : dist[ed]) << endl;
}
void solve() {cin >> n >> m;vector<vector<int>>grid(n + 1, vector<int>(n + 1, INT_MAX));vector<bool>visited(n + 1, false);vector<int>dist(n + 1, INT_MAX);while (m--) {cin >> s >> e >> v;grid[s][e] = v;grid[e][s] = v;}cin >> q;while (q--) {cin >> st >> ed;dijkstra(grid, visited, dist,st,ed);}}
int main() {std::ios::sync_with_stdio(false);std::cin.tie(0); std::cout.tie(0);solve();return 0;
}

本文参考于代码随想录

http://www.lryc.cn/news/386468.html

相关文章:

  • 微服务 | Springboot整合GateWay+Nacos实现动态路由
  • 做google SEO 有哪些好用的工具?这12款谷歌SEO工具值得收藏!
  • 【变频调速在锅炉引风机控制中的应用】
  • 网络配置(IP、NETMASK、GATEWAY、DNS、DHCP) <持续更新中>
  • 【ArcGIS 脚本工具】拯救密恐,隐藏唯一值渲染图层的标记符号
  • tensorflow学习1.3-创建会话,启动会话
  • QT基本对话框(基本对话框、工具盒类、进度条、调色板与电子钟、可扩展对话框、程序启动画面)
  • Docker 部署 MariaDB 数据库 与 Adminer 数据库管理工具
  • qt 可以在一个函数中读一个文件,然后再将内容写入另一个文件中
  • Dijkstra算法C代码
  • P1064 [NOIP2006 提高组] 金明的预算方案
  • 大型企业组网如何规划网络
  • java:aocache的单实例缓存(二)
  • ElasticSearch安装部署
  • 数据赋能(132)——开发:数据转换——影响因素、直接作用、主要特征
  • TMGM:ASIC撤销禁令,TMGM强化合规、重启差价合约服务
  • 基于SpringBoot网吧管理系统设计和实现(源码+LW+调试文档+讲解等)
  • 实测2024年最佳的三款Socks5代理IP网站
  • Pythonnet能导入clr,但无法引入System模块?
  • 媒体宣发套餐的概述及推广方法-华媒舍
  • Windows和Linux C++判断磁盘空间是否充足
  • 数据访问层如何提取数据到其他层,其他类中
  • 【JS】AI总结:JavaScript中常用的判空方法
  • Rust单元测试、集成测试
  • vue全局方法plugins/utils
  • 高阶算法班从入门到精通之路
  • C++ 左值右值
  • [数据集][目标检测]水面垃圾水面漂浮物检测数据集VOC+YOLO格式3749张1类别
  • [深度学习] 卷积神经网络CNN
  • 区别QPushButton和QToolButton