当前位置: 首页 > news >正文

【深度学习】记录为什么没有调用GPU

排查CLIP为什么评测推理没有调用GPU,主要是这个代码:https://github.com/OFA-Sys/Chinese-CLIP/blob/master/cn_clip/eval/extract_features.py

第一次认为:因为model并没有to.cuda()。
但是又发现,model.cuda(args.gpu) # 已经加载到GPU上了。
并且,pytorch中 model.cuda() 和mode.to(cuda) 没有区别。

第二次,还是在P40上启动一下,使用nvidia-smi看看GPU是否被使用了。

以下from GPT-4o,
在使用图像模型提取图片特征时,GPU利用率为0可能是由于多种原因导致的。以下是一些常见的原因和解决方法:

1. 确认使用了GPU

确保你的代码实际上是使用了GPU而不是CPU。以下是一些检查和设置GPU使用的步骤:

  • TensorFlow:

    import tensorflow as tf
    print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
    
  • PyTorch:

    import torch
    print("Is CUDA available: ", torch.cuda.is_available())
    

2. 确认GPU驱动和CUDA版本

确保你安装了正确版本的GPU驱动和CUDA工具包,并且它们与所使用的深度学习框架兼容。

  • 检查CUDA版本:

    nvcc --version
    
  • 检查驱动版本:

    nvidia-smi
    

3. 确认模型和数据在GPU上

确保你的模型和数据都被正确地加载到GPU上。

  • TensorFlow:

    with tf.device('/GPU:0'):# Your model and data operations
    
  • PyTorch:

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = inputs.to(device)
    

4. 检查批处理大小

如果批处理大小(batch size)太小,GPU利用率可能会很低。尝试增加批处理大小以更好地利用GPU。

5. 确认数据加载器的效率

数据加载器可能成为瓶颈,导致GPU等待数据。确保数据加载器使用了多线程或多进程来加速数据加载。

  • TensorFlow:

    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
    
  • PyTorch:

    data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4, pin_memory=True)
    

6. 确认模型推理代码

确保你在进行特征提取时,模型推理代码没有问题,并且确实在GPU上运行。

7. 确认没有GPU内存不足

如果GPU内存不足,可能会导致程序回退到CPU。使用nvidia-smi查看GPU内存使用情况。

8. 确认GPU没有被其他进程占用

使用nvidia-smi查看当前GPU的使用情况,确保没有其他进程占用GPU资源。

9. 检查框架和库的版本

确保你使用的深度学习框架和相关库是最新版本,因为旧版本可能存在性能问题或不支持某些功能。

10. 检查代码逻辑

确保你的代码逻辑没有问题,特别是数据预处理和模型推理部分。

示例代码

以下是一个简单的示例代码,展示了如何在PyTorch中确保模型和数据在GPU上运行:

import torch
import torchvision.models as models
from torchvision import transforms
from PIL import Image# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 加载预训练模型并将其移动到GPU
model = models.resnet50(pretrained=True)
model = model.to(device)
model.eval()# 加载并预处理图像
image = Image.open("path_to_image.jpg")
preprocess = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)  # 创建一个批次# 将输入数据移动到GPU
input_batch = input_batch.to(device)# 确保模型在GPU上进行推理
with torch.no_grad():output = model(input_batch)# 提取特征
features = output.cpu().numpy()
print(features)

通过上述步骤和检查,你应该能够找到GPU利用率为0的原因并解决问题。

http://www.lryc.cn/news/385874.html

相关文章:

  • vite 创建vue3项目 集成 ESLint、Prettier、Sass等
  • 计算机系统基础知识(上)
  • [深度学习]循环神经网络RNN
  • 【C++:list】
  • 解锁 Apple M1/M2 上的深度学习力量:安装 TensorFlow 完全指南
  • Apache Iceberg:现代数据湖存储格式的未来
  • 【离散数学·图论】(复习)
  • 【ONLYOFFICE震撼8.1】ONLYOFFICE8.1版本桌面编辑器测评
  • Shell 脚本编程保姆级教程(上)
  • 凸优化相关文章汇总
  • Java鲜花下单预约系统源码小程序源码
  • 网络变压器和RJ45接线的方法
  • Matlab/simulink三段式电流保护
  • OOXML入门学习
  • k8s集群node节点加入失败
  • layui+jsp项目中实现table单元格嵌入下拉选择框功能,下拉选择框可手动输入内容或选择默认值,修改后数据正常回显。
  • 2024年客户体验的几个预测
  • 【C++】动态内存管理new和delete
  • Java面向对象特性
  • odoo17 tree视图添加按钮
  • PreparedStatement 与Statement 的区别,以及为什么推荐使用 PreparedStatement ?
  • wsl ubuntu 安装Anaconda3步骤
  • Vue3响应式 ref全家桶
  • Mac(M1芯片)安装多个jdk,Mac卸载jdk
  • Warning message:package ‘ggplot2’ is not available (for R version 3.2.3)
  • Spring Boot 过滤器和拦截器详解
  • Eureka介绍与使用
  • JVM专题九:JVM分代知识点梳理
  • wireshark常用过滤命令
  • 「全新升级,性能更强大——ONLYOFFICE 桌面编辑器 8.1 深度评测」