当前位置: 首页 > news >正文

最小生成树模型

文章目录

    • 题单
      • 最小生成树模型
        • 1.[最短网络(prim)](https://www.acwing.com/problem/content/1142/)
        • 2. [局域网(kruskul)](https://www.acwing.com/problem/content/1143/)
        • 3. [繁忙的都市](https://www.acwing.com/problem/content/1144/)
        • 4. [ 联络员 ](https://www.acwing.com/problem/content/1145/)
        • 5. [连接格点 ](https://www.acwing.com/problem/content/1146/)

题单

最小生成树模型

1.最短网络(prim)

纯裸的一道prim模版题

和dijkstra区别:d数组记录的是一个点到生成树的最小距离

#include<bits/stdc++.h>using namespace std;
int n;
const int N=110,INF=0x3f3f3f3f;
int g[N][N],st[N],d[N];
int res;void prim(){memset(d,0x3f,sizeof d);d[1]=0;for(int i=1;i<=n;i++){int t=-1;for(int j=1;j<=n;j++){if(!st[j]&&(t==-1||d[t]>d[j])){t=j;}}res+=d[t];st[t]=1;for(int j=1;j<=n;j++) d[j]=min(d[j],g[t][j]);}
}signed main(){cin>>n;memset(g,0x3f,sizeof g);for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){cin>>g[i][j];}}prim();cout<<res<<endl;return 0;
}
2. 局域网(kruskul)

纯裸的kruskul算法

#include<bits/stdc++.h>using namespace std;
int n,k;
const int N=110,M=210;
int fa[N];int find(int x){if(x!=fa[x]) return x=find(fa[x]);return fa[x];
}struct edges{int x,y,z;bool operator<(const edges& M)const{return z<M.z;}
}es[N];signed main(){cin>>n>>k;for(int i=1;i<=n;i++) fa[i]=i;for(int i=0;i<k;i++){int x,y,z;cin>>x>>y>>z;es[i]={x,y,z};}sort(es,es+k);int res=0;for(int i=0;i<k;i++){int a=find(es[i].x),b=find(es[i].y),c=es[i].z;if(a!=b){fa[a]=b;}else{res+=c;}}cout<<res<<endl;return 0;
}
3. 繁忙的都市

思考:

  • 题目大意就是要一个最长边最小的最小生成树
  • 根据kruskull本身就需要给边排序的特性,直接按序取直到形成一颗生成树
  • 这里的最小生成树和传统的权值之和最小的生成树不一样
#include<bits/stdc++.h>using namespace std;
int n,m;
const int N=310,M=8e3+10;
int fa[N];struct edge{int x,y,z;bool operator< (const edge& M)const{return z<M.z;}
}edges[M];int find(int x){if(x!=fa[x]) x=find(fa[x]);return fa[x];
}signed main(){cin>>n>>m;for(int i=1;i<=n;i++) fa[i]=i;for(int i=0;i<m;i++){int x,y,z;cin>>x>>y>>z;edges[i]={x,y,z};}sort(edges,edges+m);int res;for(int i=0;i<m;i++){int a=find(edges[i].x),b=find(edges[i].y),c=edges[i].z;if(a!=b){fa[a]=b;res=c;}}cout<<n-1<<' '<<res<<endl;return 0;
}
4. 联络员

第一眼:

  • 根据线路分类:可以选择的路 以及 必须存在的路
    • 也就是已知某些边的存在,找到剩下的边,使生成树权值最小(其实不确定还是不是求一颗生成树,但一定要满足每个点都能到,且选择的权值最小
    • 那就直接kruskal算法
//一遍ac
#include<bits/stdc++.h>using namespace std;
const int N=2e3+10,M=1e4+10;
int fa[N];
int n,m;struct edge{int p,x,y,z;bool operator<(const edge& M)const{if(p==M.p){return z<M.z;}return p>M.p;}
}edges[M];int find(int x){if(x!=fa[x]) return x=find(fa[x]);return fa[x];
}signed main(){cin>>n>>m;for(int i=1;i<=n;i++) fa[i]=i;int res=0;for(int i=0;i<m;i++){int p,x,y,z;cin>>p>>x>>y>>z;if(p==1){int a=find(x),b=find(y);fa[a]=b;res+=z;}edges[i]={p,x,y,z};}sort(edges,edges+m);for(int i=0;i<m;i++){int a=find(edges[i].x),b=find(edges[i].y),c=edges[i].z;if(a!=b){fa[a]=b;res+=c;}}cout<<res<<endl;return 0;
}
5. 连接格点

还是在已有连线的基础上找到权值之和最小生成树

处理点阵

  • (1)把二维压成一维
  • (2) 离散化
//第一版代码tle了#include<bits/stdc++.h>using namespace std;
int n,m;
const int N=1e3+10;
int fa[N*N],g[N][N];
int cnt=0;struct edge{int x,y,z;bool operator<(const edge& M)const{return z<M.z;}}edges[2*N*N];int find(int x){if(x!=fa[x]) x=find(fa[x]);return fa[x];
}signed main(){cin>>n>>m;for(int i=1;i<=n*m;i++) fa[i]=i;int x,y,xx,yy;int t=0;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){g[i][j]=++t;if(i+1<=n){edges[cnt++]={t,t+m,1};}if(j+1<=m)edges[cnt++]={t,t+1,2};}}while(cin>>x>>y>>xx>>yy){int a=find(g[x][y]),b=find(g[xx][yy]);if(a!=b){fa[a]=b;}}sort(edges,edges+cnt);int res=0;for(int i=0;i<cnt;i++){int a=find(edges[i].x),b=find(edges[i].y),c=edges[i].z;if(a!=b){fa[a]=b;res+=c;}}cout<<res<<endl;return 0;
}

边权为正才有最小生成树

小tips:

  • 先建纵向边再建横向边,可以省去一步排序过程。
#include<bits/stdc++.h>using namespace std;
int n,m;
const int N=1e3+10;
int fa[N*N],g[N][N];
int cnt;struct edge{int x,y,z;}edges[2*N*N];int find(int x){if(x!=fa[x]) fa[x]=find(fa[x]);//这一步是路径压缩return fa[x];
}void get_edges(){int dx[]={-1,0,1,0},dy[]={0,1,0,-1},dw[]={1,2,1,2};for(int z=0;z<2;z++){for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){for(int u=0;u<4;u++){if(u%2==z){int x=i+dx[u],y=j+dy[u],w=dw[u];if(x&&x<=n&&y&&y<=m){int a=g[i][j],b=g[x][y];if(a<b) edges[cnt++]={a,b,w};}}}}}}
}signed main(){cin>>n>>m;for(int i=1;i<=n*m;i++) fa[i]=i;int x,y,xx,yy;int t=0;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){g[i][j]=++t;}}while(cin>>x>>y>>xx>>yy){int a=find(g[x][y]),b=find(g[xx][yy]);//if(a!=b){//  fa[a]=b;//}fa[a]=b;}get_edges();int res=0;for(int i=0;i<cnt;i++){int a=find(edges[i].x),b=find(edges[i].y),c=edges[i].z;if(a!=b){fa[a]=b;res+=c;}}cout<<res<<endl;return 0;
}
http://www.lryc.cn/news/385351.html

相关文章:

  • 基于盲信号处理的声音分离-基于改进的信息最大化的ICA算法
  • 如何在Qt Designer中管理QSplitter
  • 关于新零售的一些思考
  • C++初学者指南-2.输入和输出---从输入流错误中恢复
  • 毫秒级响应!清科优能应用 TDengine 建设虚拟电厂运营管理平台
  • 【Ubuntu noble】apt 无法安装软件 Unable to locate package vim
  • Instagram APIj接口——快速获取Ins帖子媒体内容下载链接
  • Java基础(四)——字符串、StringBuffer、StringBuilder、StringJoiner
  • 吐血推荐!3款视频生成工具,全部国产,都免费
  • 【Web3】Web3.js 启动!并解决Web3 is not a constructor报错
  • 算法训练营第六十七天 | 卡码网110 字符串接龙、卡码网105 有向图的完全可达性、卡码网106 岛屿的周长
  • 搭建 MySQL MHA
  • python中的线程与进程
  • 网络安全筑基篇——反序列化漏洞
  • 帝国cms定时审核并更新的方法
  • 一个简单好用安全的开源交互审计系统,支持SSH,Telnet,Kubernetes协议
  • 使用Spring Boot和WebSocket实现实时通信
  • 【Vue】集成富文本编辑器
  • 【论文阅读】--Popup-Plots: Warping Temporal Data Visualization
  • 重建大师引擎数0,本地引擎设置改不了,空三在跑,这样是正常的吗?
  • APM教程-SkyWalking安装和配置
  • 斯坦福大学 AI 研究部门推出的“7 周人工智能学习计划”
  • World of Warcraft [CLASSIC] plugin lua
  • 背靠广汽、小马智行,如祺出行打得过滴滴和百度吗?
  • CCSP自考攻略+经验总结
  • 面试突击:ArrayList源码详解
  • 力扣每日一题:2734. 执行子串操作后的字典序最小字符串
  • C++11中std::thread的使用
  • 酷瓜云课堂(内网版)v1.1.5 发布,局域网在线学习+考试系统
  • 大数据之Hadoop部署