当前位置: 首页 > news >正文

7.3 向量的数量积与向量积

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

文章目录

  • 向量的数量积
  • 向量的向量积

向量的数量积

  1. 定义:

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,称
∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ记作a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}aba→\overrightarrow{a}ab→\overrightarrow{b}b数量积(点积、内积)

  1. 性质

(1)a→⋅a→\overrightarrow{a}\cdot\overrightarrow{a}aa=∣a→∣2|\overrightarrow{a}|^{2}a2
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=0⟺\Longleftrightarrowa→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 运算规律

(1)交换律:a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=b→⋅a→\overrightarrow{b}\cdot\overrightarrow{a}ba
(2)结合律:(λa→)⋅b→(\lambda\overrightarrow{a})\cdot\overrightarrow{b}(λa)b=a→⋅(λb→)\overrightarrow{a}\cdot(\lambda\overrightarrow{b})a(λb)=λ(a→⋅b→)\lambda(\overrightarrow{a}\cdot\overrightarrow{b})λ(ab)
~~~~~~~~~~~~~~~~~                 (λa→)⋅(μb→)(\lambda\overrightarrow{a})\cdot(\mu\overrightarrow{b})(λa)(μb)=λ(a→⋅(λb→))\lambda(\overrightarrow{a}\cdot(\lambda\overrightarrow{b}))λ(a(λb))=λμ(a→⋅b→)\lambda\mu(\overrightarrow{a}\cdot\overrightarrow{b})λμ(ab)(其中λ,μ\lambda,\muλμ为实数)
(3)分配律:(a→+b→)⋅c→(\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c}(a+b)c=a→⋅c→\overrightarrow{a}\cdot\overrightarrow{c}ac+b→⋅c→\overrightarrow{b}\cdot\overrightarrow{c}bc

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=axbx+ayby+azbza_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}axbx+ayby+azbz

  • 两向量夹角公式
    a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量时,由于a→⋅b→\overrightarrow{a}\cdot\overrightarrow{b}ab=∣a→∣∣b→∣cos|\overrightarrow{a}||\overrightarrow{b}|cosa∣∣bcos θ\thetaθ,从而
    cosθcos\thetacosθ= a→⋅b→∣a→∣∣b→∣\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}a∣∣bab=axbx+ayby+azbzax2+ay2+az2bx2+by2+bz2\frac{a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}}{ \sqrt{a^{2}_{x}+a^{2}_{y}+a^{2}_{z} }\sqrt{b^{2}_{x}+b^{2}_{y}+b^{2}_{z} }}ax2+ay2+az2bx2+by2+bz2axbx+ayby+azbz

  • 两向量垂直的充要条件
    a→⊥b→\overrightarrow{a}\bot\overrightarrow{b}ab⟺\Longleftrightarrowaxbx+ayby+azbz=0a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}=0axbx+ayby+azbz=0


向量的向量积

  1. 定义

设向量a→\overrightarrow{a}a,b→\overrightarrow{b}b的夹角为θ\thetaθ,定义
向量c→\overrightarrow{c}c:①方向:c→⊥a→\overrightarrow{c}\bot\overrightarrow{a}ca,c→⊥b→\overrightarrow{c}\bot\overrightarrow{b}cb且符合右手规则
~~~~~~~~~~~~~              ②模:∣c→∣|\overrightarrow{c}|c=∣a→∣∣b→∣sin|\overrightarrow{a}||\overrightarrow{b}|sina∣∣bsin θ\thetaθ
c→\overrightarrow{c}ca→与b→\overrightarrow{a}与\overrightarrow{b}ab为的向量积(叉积),记作c→\overrightarrow{c}c=a→×b→\overrightarrow{a}×\overrightarrow{b}a×b

  1. 性质

(1)a→×a→\overrightarrow{a}×\overrightarrow{a}a×a=0→\overrightarrow{0}0
(2)a→\overrightarrow{a}a,b→\overrightarrow{b}b为两个非零向量,则有a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=0⟺\Longleftrightarrowa→∥b→\overrightarrow{a}\parallel\overrightarrow{b}ab

  1. 运算规律

(1)a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=-b→×a→\overrightarrow{b}×\overrightarrow{a}b×a
(2)结合律:(λa→)×b→(\lambda\overrightarrow{a})×\overrightarrow{b}(λa)×b=a→×(λb→)\overrightarrow{a}×(\lambda\overrightarrow{b})a×(λb)=λ(a→×b→)\lambda(\overrightarrow{a}×\overrightarrow{b})λ(a×b)
(3)分配律:(a→+b→)×c→(\overrightarrow{a}+\overrightarrow{b})×\overrightarrow{c}(a+b)×c=a→×c→\overrightarrow{a}×\overrightarrow{c}a×c+b→×c→\overrightarrow{b}×\overrightarrow{c}b×c

  1. 坐标表示
  • a→\overrightarrow{a}a=axi→+ayj→+azk→a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k}axi+ayj+azk,b→\overrightarrow{b}b=bxi→+byj→+bzk→b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k}bxi+byj+bzk,则
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j}+(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k
  • 两个向量积的行列式表示
    a→×b→\overrightarrow{a}×\overrightarrow{b}a×b=(aybz−azby)i→+(azbx−axbz)j→+(axby−aybx)k→(a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j} +(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k}(aybzazby)i+(azbxaxbz)j+(axbyaybx)k = ∣i→j→k→axayazbxbybz∣\left| \begin{array}{cccc} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_{x}&a_{y}&a_{z}\\ b_{x}&b_{y}&b_{z}\\ \end{array} \right| iaxbxjaybykazbz

http://www.lryc.cn/news/38450.html

相关文章:

  • Qt静态扫描(命令行操作)
  • 【Hadoop】配置文件
  • python进程池
  • 笔记本固态盘数据丢失怎么办?笔记本固态盘怎么恢复数据
  • 堆的结构与实现
  • Pandas快速入门
  • LVGL学习笔记18 - 表Table
  • 嵌入式安防监控项目——html框架分析和环境信息刷新到网页
  • centos安装docker详细步骤
  • 初识HTML、W3C标准、如何利用IDEA创建HTML项目、HTML基本结构、网页基本信息
  • 为什么程序员喜欢这些键盘?
  • JS中数组去重的几种方法
  • Nginx 配置实例-负载均衡
  • 引出生命周期、生命周期_挂载流程、生命周期_更新流程、生命周期_销毁流程、生命周期_总结——Vue
  • C++ STL学习之【vector的使用】
  • 方差分析与单因素方差分析
  • 分布式链路追踪组件skywalking介绍
  • SUBMIT的用法
  • 网页基本标签、图像标签、链接标签、块内元素和块元素、列表标签、表格标签
  • RxJava操作符变换过程
  • 开放平台订单接口
  • CDN相关知识点
  • 【论文阅读】注意力机制与二维 TSP 问题
  • [深入理解SSD系列 闪存实战2.1.7] NAND FLASH基本编程(写)操作及原理_NAND FLASH Program Operation 源码实现
  • PMP项目管理项目资源管理
  • 程序的编译和链接
  • Win11的两个实用技巧系列之无法联网怎么办、耳机没声音的多种解决办法
  • 【微信小程序】-- 自定义组件 - 数据监听器 - 案例 (三十五)
  • Linux - 第7节 - 进程间通信
  • # 数据完整性算法在shell及python中的实践