当前位置: 首页 > news >正文

【GD32】从零开始学兆易创新32位微处理器——RTC实时时钟+日历例程

1 简介

RTC实时时钟顾名思义作用和墙上挂的时钟差不多,都是用于记录时间和日历,同时也有闹钟的功能。从硬件实现上来说,其实它就是一个特殊的计时器,它内部有一个32位的寄存器用于计时。RTC在低功耗应用中可以说相当重要,因为在使用外部低速晶振的条件下,它在所有的低功耗模式下都可以工作,这使得RTC很适合实现芯片的低功耗唤醒。下面是RTC的框图。

咋一看RTC的内部还挺复杂的。

2 硬件时钟

先看时钟,RTC的时钟可以选择内部32kHz晶振、外部高速晶振分频或外部低速时钟,一般都是使用外部32.768kHz低速晶振来驱动。时钟会先经过数字平滑校准器,用户可以配置进行进行校准;接着进入7位异步预分频器,这个分频器一般设置最大分频,即128分频,因为这个分频器的值越大RTC的功耗会越低;然后时钟进入一个粗校准器,需要注意的是粗校准和前面的数字平滑校准同时只能开启其中一个;之后时钟进入一个15位的同步预分频器,这里一般设置为256分频,这样就刚好能分出1Hz的频率,也就是每秒更新一次RTC。

当然上面介绍的是最常用的RTC时钟配置,根据不同的功能实现还可以有其他的配置。

3 功能

3.1 日历

RTC的日历功能依赖3个寄存器——RTC_DATE(日期寄存器)RTC_TIME(时间寄存器)RTC_SS(亚秒寄存器)。日期寄存器和时间寄存器保存我们熟知的年月日时分秒数据,是以BCD码的方式保存的。亚秒寄存器用于保存毫秒级的时钟数据。

上面的3个寄存器RTC内部会有对应的影子寄存器,在实际应用中我们一般读取它们对应的影子寄存器。每2个RTC周期影子寄存器才会更新一次,虽说影子寄存器的值与实际值会有延迟,但它能保证读出来的值是一致的。如果我们读的是寄存器的实际值,那么有可能在读的过程中RTC对寄存器进行了更新,导致我们读到的值前后不一致

在读取影子寄存器的值时,我们要等待状态寄存器的RSYNF位置1才能读取,此时寄存器的值才是稳定的。另外需注意的是,在深度睡眠和待机模式下,影子寄存器的值是不更新的,因此退出该模式时需要清除RSYNF位

3.2 自动唤醒

在低功耗应用中,RTC的自动唤醒功能可以说是必用到的,RTC内部使用一个16位的向下计数的计数器实现自动唤醒。计数器的驱动时钟可以选择RTC时钟的2/4/8/16分频或内部时钟,一般会选择内部时钟,即ck_spre。如果ck_spre为1Hz的话,唤醒的时间可以设置在1秒到36小时之间。

当计数器到0时,WTF标志位置1,唤醒计数器自动重载RTC_WUT的值。当WTF1后,必须软件清除该标志。如果使能了中断功能,并且芯片处于低功耗模式,唤醒中断会使芯片退出低功耗模式。

3.3 闹钟

RTC内部有2个可配置的闹钟,它与我们日常熟知的闹钟原理是差不多的;通过设置闹钟日期寄存器和闹钟亚秒寄存器来配置唤醒时刻,当到达指定时刻时闹钟会产生中断,该中断也能将芯片从低功耗模式中唤醒。

3.4 时间戳功能

时间戳功能由RTC_TS管脚输入,通过配置TSEN位来使能。当RTC_TS管脚检测到时间戳事件发生时,会将日历的值保存在时间戳寄存器中(RTC_DTS / RTC_TTS / RTC_SSTS),同时时间戳标志(TSF)也将由硬件置1。如果时间戳中断使能被启用(TSIE),时间戳事件会产生一个中断,该中断也能将芯片从低功耗模式中唤醒。

4 例程

4.1 日历

这个例程主要是配置RTC让它正常工作,然后定时读取日历值。

先看main函数。

#include "gd32f4xx.h"
#include "systick.h"
#include "debug.h"
#include "rtc.h"struct tm time_struct = {.tm_year = 2024,.tm_mon = 1,.tm_mday = 1,.tm_hour = 0,.tm_min = 0,.tm_sec = 0,.tm_wday = RTC_MONDAY
};int main(void)
{systick_config();debug_init();rtc_config(&time_struct);printf("rtc demo\r\n");while(1){struct tm ts = {0};rtc_get_time(&ts);printf("%02d-%02d-%02d %02d:%02d:%02d\r\n", ts.tm_year, ts.tm_mon, ts.tm_mday, ts.tm_hour, ts.tm_min, ts.tm_sec);delay_1ms(1000);}
}

 main函数调用rtc_config函数初始化RTC,传入struct tm结构体,这个结构体是time.h里面定义的,是系统库自带的,它的定义如下。

struct tm {int tm_sec;   /* seconds after the minute, 0 to 60(0 - 60 allows for the occasional leap second) */int tm_min;   /* minutes after the hour, 0 to 59 */int tm_hour;  /* hours since midnight, 0 to 23 */int tm_mday;  /* day of the month, 1 to 31 */int tm_mon;   /* months since January, 0 to 11 */int tm_year;  /* years since 1900 */int tm_wday;  /* days since Sunday, 0 to 6 */int tm_yday;  /* days since January 1, 0 to 365 */int tm_isdst; /* Daylight Savings Time flag */union {       /* ABI-required extra fields, in a variety of types */struct {int __extra_1, __extra_2;};struct {long __extra_1_long, __extra_2_long;};struct {char *__extra_1_cptr, *__extra_2_cptr;};struct {void *__extra_1_vptr, *__extra_2_vptr;};};
};

初始化函数的内部如下。

void rtc_config(struct tm *t)
{/* 使能PMU时钟 */rcu_periph_clock_enable(RCU_PMU);/* 使能RTC寄存器访问 */pmu_backup_write_enable();/* 使用外部低速晶振 */rcu_osci_on(RCU_LXTAL);rcu_osci_stab_wait(RCU_LXTAL);rcu_rtc_clock_config(RCU_RTCSRC_LXTAL);rcu_periph_clock_enable(RCU_RTC);rtc_register_sync_wait();/* 初始化时钟 */rtc_set_time(t);
}

因为RTC使用的是VBAT供电域,默认配置下该供电域的寄存器是写禁止的,因此需要调用pmu_backup_write_enable函数使能写操作。下面就是配置外部低速时钟,然后调用rtc_register_sync_wait等待影子寄存器同步数据。初始化完毕就可以配置日历了。

void rtc_set_time(const struct tm *time_struct)
{rtc_parameter_struct rtc_initpara = {0};/* RTC时钟频率 = 32.768kHz / (255 + 1) / (127 + 1) = 1Hz */rtc_initpara.factor_asyn = 127;rtc_initpara.factor_syn = 255;rtc_initpara.display_format = RTC_24HOUR;rtc_initpara.year = BIN_TO_BCD(time_struct->tm_year - 1970);rtc_initpara.month = BIN_TO_BCD(time_struct->tm_mon);rtc_initpara.date = BIN_TO_BCD(time_struct->tm_mday);rtc_initpara.hour = BIN_TO_BCD(time_struct->tm_hour);rtc_initpara.minute = BIN_TO_BCD(time_struct->tm_min);rtc_initpara.second = BIN_TO_BCD(time_struct->tm_sec);rtc_initpara.day_of_week = time_struct->tm_wday;rtc_init(&rtc_initpara);
}

配置日历使用rtc_init函数,按需要填充结构体即可;factor_asyn成员是异步分频器的值,factor_syn是同步分频器的值。另外需要注意日历寄存器内的值是以BCD码形式保存,因此需要写一个简单的转换宏,像下面。

#define BIN_TO_BCD(x) ((((x) / 10) << 4) + ((x) % 10))

还有就是RTC的寄存器年份内容只能保存2个数字,即只能计算99年,所以根据需要填合适的起始值进去,像我这里就是起始年份定为1970年,把当前年份减去1970转换为BCD码后填进寄存器。

 RTC运行时可以随时调用rtc_current_time_get获取当前时间。

void rtc_get_time(struct tm *time_struct)
{rtc_parameter_struct rtc_initpara = {0};rtc_current_time_get(&rtc_initpara);time_struct->tm_year = BCD_TO_BIN(rtc_initpara.year) + 1970;time_struct->tm_mon = BCD_TO_BIN(rtc_initpara.month);time_struct->tm_mday = BCD_TO_BIN(rtc_initpara.date);time_struct->tm_hour = BCD_TO_BIN(rtc_initpara.hour);time_struct->tm_min = BCD_TO_BIN(rtc_initpara.minute);time_struct->tm_sec = BCD_TO_BIN(rtc_initpara.second);time_struct->tm_wday = rtc_initpara.day_of_week;
}

 取值的时候也是要将BCD码转成对应的数字,用下面的宏。

#define BCD_TO_BIN(x) (10 * ((x) >> 4) + ((x) & 0x0F))

下面是demo的输出。 

http://www.lryc.cn/news/380265.html

相关文章:

  • HTTP网络协议
  • Kubernetes相关生态
  • C语言入门4-函数和程序结构
  • 分行业二氧化碳排放数据
  • 【OS基础】符合AUTOSAR标准的RTAOS-Alarms详解
  • 基于Java的学生成绩管理系统
  • 都2024年了,还有人不懂动态代理么?
  • ARM功耗管理框架之PPU
  • 说说 SSL 的错误认识和不足之处
  • Go语言day1
  • 【Python机器学习】利用t-SNE进行流形学习
  • 03 - matlab m_map地学绘图工具基础函数 - 设置坐标系(m_coord)
  • UEC++ 虚幻5第三人称射击游戏(一)
  • java小代码(1)
  • SLAM ORB-SLAM2(27)词袋模型
  • OpenAI 的 GPT-5:CTO米拉-穆拉提说,到 2026 年将实现博士级智能(Ph.D.-Level))
  • macbook配置adb环境和用adb操作安卓手机
  • 微软TTS最新模型,发布9种更真实的AI语音
  • python爬虫 -爬取 json 格式数据
  • Pytorch(5)-----梯度计算
  • C#的膨胀之路:创新还是灭亡
  • SpringBoot 过滤器和拦截器的区别
  • 协程执行顺序引发的问题
  • android webview调用js滚动到指定位置
  • WPF 深入理解一、基础知识介绍
  • 腾讯云点播ugc upload | lack signature 问题处理
  • 计算机视觉实验二:基于支持向量机和随机森林的分类(Part one: 编程实现基于支持向量机的人脸识别分类 )
  • 5.什么是C语言
  • DINO-DETR
  • Representation RL:HarmonyDream: Task Harmonization Inside World Models