当前位置: 首页 > news >正文

714. 买卖股票的最佳时机含手续费

714. 买卖股票的最佳时机含手续费

  • 原题链接:
  • 完成情况:
  • 解题思路:
      • Explanation
      • Summary
  • 参考代码:
    • _714买卖股票的最佳时机含手续费
  • 错误经验吸取

原题链接:

714. 买卖股票的最佳时机含手续费

https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/description/

完成情况:

在这里插入图片描述

解题思路:

Sure, let’s break down the code and explain it step by step.

The problem is to maximize the profit from buying and selling stocks given that there is a transaction fee each time you sell a stock. You can perform as many transactions as you like, but you must sell the stock before you can buy again.

Explanation

  1. Initialization:

    int n = prices.length;
    int [][] dp = new int[n][2];
    dp[0][0] = 0;
    dp[0][1] = -prices[0];
    
    • n is the length of the prices array.
    • dp is a 2D array where dp[i][0] represents the maximum profit at day i when you don’t have any stock, and dp[i][1] represents the maximum profit at day i when you have one stock.
    • On day 0, if you don’t own a stock, the profit is 0 (dp[0][0] = 0).
    • On day 0, if you own a stock, the profit is -prices[0] because you bought the stock at prices[0] (dp[0][1] = -prices[0]).
  2. DP Transition:

    for (int i = 1; i < n; i++){dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i] - fee);dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
    }
    
    • For each day i from 1 to n-1, we update the dp array:
      • dp[i][0] can be obtained by either:
        • Doing nothing on day i, hence dp[i][0] = dp[i-1][0].
        • Selling the stock on day i, hence dp[i][0] = dp[i-1][1] + prices[i] - fee (selling the stock gives the price at day i, but we must subtract the transaction fee).
      • dp[i][1] can be obtained by either:
        • Doing nothing on day i, hence dp[i][1] = dp[i-1][1].
        • Buying the stock on day i, hence dp[i][1] = dp[i-1][0] - prices[i] (we subtract the price at day i from the profit since we are buying the stock).
  3. Result:

    return dp[n-1][0];
    
    • At the end of the loop, dp[n-1][0] will contain the maximum profit we can achieve on the last day if we don’t own any stock (which is the desired result since we want to end up with no stock to realize the profit).

Summary

  • The algorithm uses dynamic programming to keep track of the maximum profit for each day, considering both states of holding a stock or not holding a stock.
  • The transition equations consider the profit from both holding and selling a stock, incorporating the transaction fee.
  • Finally, the algorithm returns the maximum profit achievable by the end of the last day when no stock is held.

参考代码:

_714买卖股票的最佳时机含手续费

package leetcode板块;public class _714买卖股票的最佳时机含手续费 {/**** @param prices* @param fee* @return*/public int maxProfit(int[] prices, int fee) {//  你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。//  返回获得利润的最大值。int n = prices.length;int [][] dp = new int[n][2];//  0 代表当前股票的空余情况, 1代表当前股票处于抛售的情况dp[0][0] = 0;dp[0][1] = -prices[0];//  TODO   交易的过程中,引入卖出时的手续费for (int i = 1; i < n; i++){dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] + prices[i] - fee);dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);}return dp[n-1][0];}
}

错误经验吸取

http://www.lryc.cn/news/380219.html

相关文章:

  • Linux系统查看程序内存及CPU占用
  • 数据结构7---图
  • Excel 如何复制单元格而不换行
  • 前端 CSS 经典:mix-blend-mode 属性
  • OpenCV--滤波器(一)
  • MK的前端精华笔记
  • 低代码平台框架:开源选型、实践与应用深度解析
  • 深度学习500问——Chapter12:网络搭建及训练(3)
  • Android使用DevRing框架搭建数据库实体类以及使用
  • 高效BUG管理:定级、分类和处理流程
  • 服务器数据恢复—raid5热备盘同步失败导致阵列崩溃如何恢复数据?
  • Ubuntu iso 镜像下载 步骤截图说明
  • git拉取gitee项目到本地
  • 力扣42.接雨水
  • 国产数据库与MYSQL兼容性?开发应该怎么选择?
  • Spring框架中Bean的生命周期
  • 从零到一学FFmpeg:avformat_alloc_output_context2 函数详析与实战
  • Lua 绕过元表
  • pip方法总结(极简快速掌握)
  • aigc基础概念(一)
  • USB学习——12、usb初始化和插拔驱动软件流程大致框架描述
  • 【ARMv8/ARMv9 硬件加速系列 2.4 -- ARM NEON Q寄存器与V寄存器的关系】
  • Oracle中递归查询(START WITH……CONNECT BY……)
  • 【云原生|K8S系列】如何创建Kubernetes job和Cronjobs 入门指南
  • 力扣每日一题 6/23 字符串/模拟
  • Google trend搜索关键词
  • Unity C#调用Android,IOS震动功能
  • Ruby 注释
  • C语言入门系列:特殊的main函数和exit函数
  • JAVA复习3