当前位置: 首页 > news >正文

ES全文检索支持繁简和IK分词检索

ES全文检索支持繁简和IK分词检索

  • 1. 前言
  • 2. 引入繁简转换插件analysis-stconvert
    • 2.1 下载已有作者编译后的包文件
    • 2.2 下载源码进行编译
    • 2.3 复制解压插件到es安装目录的plugins文件夹下
  • 3. 引入ik分词器插件
    • 3.1 已有作者编译后的包文件
    • 3.2 只有源代码的版本
    • 3.3 安装ik分词插件
  • 4. 建立IK和繁简集成的es索引
  • 5. 新增数据测试检索

1. 前言

在现代信息检索中,处理不同语言的变体和实现高效的全文检索是一个重要的需求。对于中文,特别是需要处理简体和繁体的转换,以及高效的分词处理,这就显得尤为重要。ElasticSearch(ES)作为一个分布式全文搜索引擎,提供了强大的文本搜索和分析能力,但默认情况下并不支持简繁转换和高级的中文分词。因此,我们需要通过一些插件和自定义设置来实现这一功能。

本教程旨在展示如何在ES中引入繁简转换和IK分词插件,使得在检索时无论输入简体还是繁体都能够被检索到。无论用户输入“語法”还是“语法”,检索结果中都能命中包含简体和繁体的相关文档。这种处理方式不仅提升了用户体验,还增强了检索的准确性和全面性。

通过引入分析插件analysis-stconvert和分词插件analysis-ik,并结合自定义的ES配置,我们可以实现这一目标。以下将详细介绍如何下载、编译、安装这些插件,并通过示例展示如何建立支持繁简转换和IK分词的ES索引,最后通过实际数据插入和检索验证配置的效果。

2. 引入繁简转换插件analysis-stconvert

插件地址: https://github.com/infinilabs/analysis-stconvert/releases

2.1 下载已有作者编译后的包文件

如果存在可直接使用的zip文件,选择与自己版本一致的版本在这里插入图片描述

2.2 下载源码进行编译

如果没有下载即可使用的安装包,需要自己下载源码进行编译。下载打开后使用mvn clean install进行打包

image-20240621135510851

如果报错信息如下:

[ERROR] COMPILATION ERROR :
[INFO] -------------------------------------------------------------
[ERROR] /E:/project/PersonalProjects/analysis-stconvert-7.17.11/analysis-stconvert-7.17.11/src/main/java/org/elasticsearch/index/analysis/STConvertAnalyzerProvider.java:[28,9] 无法将类 org.elasticsearch.index.analysis.AbstractIndexA
nalyzerProvider<T>中的构造器 AbstractIndexAnalyzerProvider应用到给定类型;需要: org.elasticsearch.index.IndexSettings,java.lang.String,org.elasticsearch.common.settings.Settings找到: java.lang.String,org.elasticsearch.common.settings.Settings原因: 实际参数列表和形式参数列表长度不同
[ERROR] /E:/project/PersonalProjects/analysis-stconvert-7.17.11/analysis-stconvert-7.17.11/src/main/java/org/elasticsearch/index/analysis/STConvertTokenFilterFactory.java:[31,9] 无法将类 org.elasticsearch.index.analysis.AbstractToke
nFilterFactory中的构造器 AbstractTokenFilterFactory应用到给定类型;需要: org.elasticsearch.index.IndexSettings,java.lang.String,org.elasticsearch.common.settings.Settings找到: java.lang.String,org.elasticsearch.common.settings.Settings原因: 实际参数列表和形式参数列表长度不同
[ERROR] /E:/project/PersonalProjects/analysis-stconvert-7.17.11/analysis-stconvert-7.17.11/src/main/java/org/elasticsearch/index/analysis/STConvertCharFilterFactory.java:[34,9] 无法将类 org.elasticsearch.index.analysis.AbstractCharF
ilterFactory中的构造器 AbstractCharFilterFactory应用到给定类型;需要: org.elasticsearch.index.IndexSettings,java.lang.String找到: java.lang.String原因: 实际参数列表和形式参数列表长度不同
[INFO] 3 errors
[INFO] -------------------------------------------------------------
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE

下面类中,增加如下参数,标红报错不需要处理仍可以打包成功

image-20240621141224356

打包成功后可以在项目目录\target\releases看到编译后的压缩包elasticsearch-analysis-stconvert-7.17.11.zip

image-20240621141327596

2.3 复制解压插件到es安装目录的plugins文件夹下

image-20240621142124582

es数据库启动时会自动加载插件,如下输出即表示引入成功

image-20240621142402756

3. 引入ik分词器插件

GitHub下载地址:Releases · infinilabs/analysis-ik · GitHub

3.1 已有作者编译后的包文件

选择与所需es版本相同的ik分词器,下载已经打包后的.zip文件

image-20240421170408043

3.2 只有源代码的版本

首先下载源码解压后使用idea打开,修改es版本与分词器版本相同

image-20240421172009705

使用 mvn clean install 打包时报错:

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.5.1:compile (default-compile) on project elasticsearch-analysis-ik: Compilation failure
[ERROR] /D:/PersonalProjects/analysis-ik-7.17.11/analysis-ik-7.17.11/src/main/java/org/elasticsearch/index/analysis/IkAnalyzerProvider.java:[13,9] 无法将类 org.elasticsearch.index.analysis.AbstractIndexAnalyzerProvider<T>中的构造器 
AbstractIndexAnalyzerProvider应用到给定类型;
[ERROR]   需要: org.elasticsearch.index.IndexSettings,java.lang.String,org.elasticsearch.common.settings.Settings
[ERROR]   找到: java.lang.String,org.elasticsearch.common.settings.Settings

修改代码报错部分:增加indexSetting参数到super入参的第一个位置

image-20240421172326529

使用mvn clean install进行打包,注意我们所需的是/target/release目录下的.zip压缩包

image-20240421172441311

3.3 安装ik分词插件

将下载或者编译后的.zip文件解压到es的安装目录下的plugins目录下,并重命名为ik

image-20240421173223669

然后启动es,查看日志可发现已经加载的ik分词器

image-20240421173516905

常规的最常用的使用方式就是,数据插入存储时用 ik_max_word模式分词,而检索时,用ik_smart模式分词,即:索引时最大化的将文章内容分词,搜索时更精确的搜索到想要的结果。

4. 建立IK和繁简集成的es索引

PUT http://localhost:9200/test/
{"aliases": {},"settings": {"index": {"refresh_interval": "3s","number_of_shards": "3","number_of_replicas": "1","max_inner_result_window": "10000","max_result_window": "20000","analysis": {"analyzer": {"ik_max_word_convert": {"type": "custom","char_filter": ["tsconvert","stconvert"],"tokenizer": "ik_max_word","filter": ["lowercase"]},"ik_smart_convert": {"type": "custom","char_filter": ["tsconvert","stconvert"],"tokenizer": "ik_smart","filter": ["lowercase"]}}}}},"mappings": {"properties": {"otherTitle": {"type": "text","analyzer": "ik_max_word_convert","search_analyzer": "ik_smart_convert"}}}
}

analysis部分定义了自定义分析器:

  • ik_max_word_convert:
    • type: "custom" :定义一个自定义分析器。
    • char_filter:
      • tsconvert: 自定义字符过滤器(用于繁体到简体转换)。
      • stconvert: 自定义字符过滤器(用于简体到繁体转换)。
    • tokenizer: "ik_max_word" - 使用IK分析器的最大词语分割。
    • filter: ["lowercase"] - 将所有字符转换为小写。
  • ik_smart_convert:
    • type: "custom"
    • char_filter:
      • tsconvert
      • stconvert
    • tokenizer: "ik_smart"
    • filter: ["lowercase"]

5. 新增数据测试检索

新增测试数据

PUT /test/_doc/2
{"nickName":"語法講義"
} PUT /test/_doc/3
{"nickName":"语法讲义"
} 

中文简写查询

image-20240621145358721

中文繁体查询

image-20240621145557738

通过上述配置和测试,我们可以看到无论是简体输入还是繁体输入,ES都能正确检索到相关文档。这证明了我们引入的繁简转换和IK分词插件的有效性,以及自定义分析器配置的正确性

http://www.lryc.cn/news/379297.html

相关文章:

  • 解决Visual Studio Code在Ubuntu上崩溃的问题
  • 【OpenGauss源码学习 —— (ALTER TABLE(SET attribute_option))】
  • Elasticsearch 数据提取 - 最适合这项工作的工具是什么?
  • ‘浔川画板v5.1’即将上线!——浔川python社
  • RockChip Android12 System之Datetime
  • 详解 ClickHouse 的副本机制
  • 速卖通测评成本低见效快,自养号测评的实操指南,快速积累销量和好评
  • php反序列化漏洞简介
  • 力扣随机一题 模拟+字符串
  • java-正则表达式 1
  • Python xlrd库:读excel表格
  • 开发中遇到的一个bug
  • Java面试题:对比不同的垃圾收集器(如Serial、Parallel、CMS、G1)及其适用场景
  • 每日一题——冒泡排序
  • javascript浏览器对象模型
  • C语言之链表以及单链表的实现
  • AI在线免费视频工具2:视频配声音;图片说话hedra
  • Elastic字段映射(_source,doc_value,fileddata,index,store)
  • kotlin空类型安全 !! ?. ?:
  • 通过 WireGuard 组建虚拟局域网 实现多个局域网全互联
  • qmt量化交易策略小白学习笔记第47期【qmt编程之期货仓单】
  • 点云处理中阶 Sampling
  • 为什么print语句被Python3遗弃?
  • 067、Python 高阶函数的编写:优质冒泡排序
  • 【Python】从基础到进阶(一):了解Python语言基础以及变量的相关知识
  • AI学习指南机器学习篇-KNN的优缺点
  • 全网最全!25届最近5年上海理工大学自动化考研院校分析
  • LANG、LC_MESSAGES和LC_ALL
  • 生成式AI和LLM的一些基本概念和名词解释
  • python项目(课设)——飞机大战小游戏项目源码(pygame)