当前位置: 首页 > news >正文

从二元一次方程组到二阶行列式再到克拉默法则

目录

  • 引言
    • 1 二元一次方程组
      • 什么是二元一次方程组?
      • 解法概述
      • 示例
        • 1. 操作步骤
        • 2. 消元法
    • 2 二阶行列式
      • 引入行列式
      • 行列式定义
      • 示例计算
    • 3 克拉默法则
      • 什么是克拉默法则?
      • 克拉默法则公式
      • 使用克拉默法则求解
    • 4 总结

引言

  在数学中,线性代数提供了一套强大的工具来解决各种实际问题。本文将介绍从二元一次方程组开始,如何利用二阶行列式和克拉默法则来求解问题。

1 二元一次方程组

什么是二元一次方程组?

二元一次方程组指包含两个变量的一次方程组,通常形如:

{ 3 x + 4 y = 5 7 x + 9 y = 11 \begin{cases} 3x + 4y = 5 \\ 7x + 9y = 11 \end{cases} {3x+4y=57x+9y=11

这里,3、4、7、9、5 和 11 是已知的常数,(x) 和 (y) 是需要求解的未知数。

解法概述

解决这种方程组的一种基本方法是消元法。通过适当的操作消去一个变量,简化成一个关于单个变量的方程。让我们详细说明这个过程。

示例

1. 操作步骤

首先,我们将两个方程进行变形,以便消去一个变量。

原方程组

{ 3 x + 4 y = 5 7 x + 9 y = 11 \begin{cases} 3x + 4y = 5 \\ 7x + 9y = 11 \end{cases} {3x+4y=57x+9y=11

2. 消元法

为了消去一个变量,我们将第一个方程和第二个方程进行适当的变换。假设我们希望消去 (x),我们可以进行如下操作:

将第一个方程乘以 7:
将第二个方程乘以 3:

{ 7 ⋅ 3 x + 7 ⋅ 4 y = 7 ⋅ 5 3 ⋅ 7 x + 3 ⋅ 9 y = 3 ⋅ 11 \begin{cases} 7 \cdot 3x + 7 \cdot 4y = 7 \cdot 5 \\ 3 \cdot 7x + 3 \cdot 9y = 3 \cdot 11 \end{cases} {73x+74y=7537x+39y=311

两式相减,求得 y 的值
y = 7 ⋅ 5 − 3 ⋅ 11 7 ⋅ 4 − 3 ⋅ 9 y=\frac{7 \cdot 5 - 3 \cdot 11}{7 \cdot 4 - 3 \cdot 9} y=743975311
现在我们就想,把分子分母换成行列式写法,由此就引入了二阶行列式的写法,上面的式子可以写为这样

y = ∣ 7 3 11 5 ∣ ∣ 7 3 9 4 ∣ y = \frac{\begin{vmatrix} 7 & 3 \\ 11 & 5 \end{vmatrix}}{\begin{vmatrix} 7 & 3 \\ 9 & 4 \end{vmatrix}} y= 7934 71135

最后求得 x 和 y 的值:

y = 2 x = − 1 y = 2 \\ x = -1 y=2x=1

2 二阶行列式

引入行列式

在上面的步骤中,我们进行了方程变换和变量消去,实际上可以使用行列式的方法来简化这些步骤。

行列式定义

行列式是一种代数表达式,用于求解线性方程组。二阶行列式定义如下:

∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc acbd =adbc

示例计算

对于矩阵

( 3 4 7 9 ) \begin{pmatrix} 3 & 4 \\ 7 & 9 \end{pmatrix} (3749)

其行列式为:

∣ 3 4 7 9 ∣ = 3 ⋅ 9 − 4 ⋅ 7 = 27 − 28 = − 1 \begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix} = 3 \cdot 9 - 4 \cdot 7 = 27 - 28 = -1 3749 =3947=2728=1

3 克拉默法则

什么是克拉默法则?

克拉默法则是一种利用行列式解决线性方程组的方法。对于一个二元一次方程组:

{ 3 x + 4 y = 5 7 x + 9 y = 11 \begin{cases} 3x + 4y = 5 \\ 7x + 9y = 11 \end{cases} {3x+4y=57x+9y=11

它可以表示成矩阵形式 (AX = B),其中:

A = ( 3 4 7 9 ) , X = ( x y ) , B = ( 5 11 ) A = \begin{pmatrix} 3 & 4 \\ 7 & 9 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, B = \begin{pmatrix} 5 \\ 11 \end{pmatrix} A=(3749),X=(xy),B=(511)

克拉默法则公式

克拉默法则提供了求解线性方程组的公式。可以很方便的解出 (x) 和 (y),注意分母都是一样的:

x = ∣ 5 4 11 9 ∣ ∣ 3 4 7 9 ∣ , y = ∣ 3 5 7 11 ∣ ∣ 3 4 7 9 ∣ x = \frac{\begin{vmatrix} 5 & 4 \\ 11 & 9 \end{vmatrix}}{\begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix}}, \quad y = \frac{\begin{vmatrix} 3 & 5 \\ 7 & 11 \end{vmatrix}}{\begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix}} x= 3749 51149 ,y= 3749 37511

使用克拉默法则求解

  1. 计算分母

∣ 3 4 7 9 ∣ = 3 ⋅ 9 − 4 ⋅ 7 = − 1 \begin{vmatrix} 3 & 4 \\ 7 & 9 \end{vmatrix} = 3 \cdot 9 - 4 \cdot 7 = -1 3749 =3947=1

  1. 计算 (x) 的分子

∣ 5 4 11 9 ∣ = 5 ⋅ 9 − 4 ⋅ 11 = 45 − 44 = 1 \begin{vmatrix} 5 & 4 \\ 11 & 9 \end{vmatrix} = 5 \cdot 9 - 4 \cdot 11 = 45 - 44 = 1 51149 =59411=4544=1

  1. 计算 (y) 的分子

∣ 3 5 7 11 ∣ = 3 ⋅ 11 − 5 ⋅ 7 = 33 − 35 = − 2 \begin{vmatrix} 3 & 5 \\ 7 & 11 \end{vmatrix} = 3 \cdot 11 - 5 \cdot 7 = 33 - 35 = -2 37511 =31157=3335=2

  1. 求解

x = 1 − 1 = − 1 x = \frac{1}{-1} = -1 x=11=1

y = − 2 − 1 = 2 y = \frac{-2}{-1} = 2 y=12=2

4 总结

  本文我们从二元一次方程组的基本求解方法开始,逐步引入了行列式,并最终介绍了克拉默法则。在实际应用中,使用行列式和克拉默法则可以简化计算过程,使得解决线性方程组更加直观和有效。

http://www.lryc.cn/news/378936.html

相关文章:

  • 示例:WPF中绑定枚举到ComboBox想显示成中文或自定义名称如何实现
  • 嵌入式系统软件架构设计方法
  • 【面试题】风险评估和应急响应的工作流程
  • Vue70-路由的几个注意点
  • Aidlux 1.4 部署Nextcloud 2024.6实录 没成功
  • 网络与协议安全复习 - 电子邮件安全
  • Python里的序列化是什么?
  • 自动抓取服务器功耗
  • 服务器接收苹果订阅通知
  • 2024年旅游与经济发展国际会议(ICTED 2024)
  • 【NLP练习】Transformer实战-单词预测
  • 使用Lua脚本保证原子性的Redis分布式锁实现
  • 什么是nginx到底怎么配置,什么是网关到底怎么配置?
  • 轻量级服务器内存不够编译的情况解决方案(以安装Ta-Lib库为例)
  • 学校校园考场电子钟,同步授时,助力考场公平公正-讯鹏科技
  • MySQL存储管理(一):删数据
  • 深度剖析现阶段的多模态大模型做不了医疗
  • Zabbix 监控 Kubernetes 集群
  • 网上预约就医取号系统
  • 概念描述——TCP/IP模型中的两个重要分界线
  • ECharts,拿来吧你!
  • 【DICOM】BitsAllocated字段值为8和16时区别
  • 【MySQL】 -- 事务
  • c#调用c++生成的dll,c++端使用opencv, c#端使用OpenCvSharp, 返回一张图像
  • 【Android面试八股文】你能说一说View绘制流程与自定义View注意点吗?
  • 【第24章】Vue实战篇之用户信息展示
  • “打造智能售货机系统,基于ruoyi微服务版本生成基础代码“
  • oracle12c到19c adg搭建(五)dg搭建后进行切换19c进行数据字典升级
  • 在公司的一些笔记
  • 2020C++等级考试二级真题题解