当前位置: 首页 > news >正文

基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真。仿真输出GDOP优化结果,遗传算法的优化收敛曲线以及三维空间坐标点。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

....................................................................% 开始迭代while gen < MAXGEN;   genrng(gen);% 设置随机种子Pe0 = 0.999;% 交叉概率pe1 = 0.001; % 变异概率FitnV=ranking(Objv);    % 适应度排序Selch=select('sus',Chrom,FitnV);     % 筛选操作Selch=recombin('xovsp', Selch,Pe0);   % 交叉操作Selch=mut( Selch,pe1);   % 变异操作phen1=bs2rv(Selch,FieldD);   % 解码操作% 计算新一代的目标值for a=1:1:NIND  X1          = phen1(a,:);%计算对应的目标值[fobj,Vgdop]= func_obj(X1,target_pos);% 计算目标JJ(a,1)     = fobj;% 存储目标值XYp{a}      = X1; % 存储解Vp{a}       = Vgdop;% 存储GDOPend Objvsel=(JJ);    [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   gen=gen+1; Error(gen) = mean(JJ);end figure;plot(Error,'k','linewidth',2);grid onxlabel('迭代次数');ylabel('遗传算法优化过程');
JZ_pos
% 3D图显示
figure;
plot3(JZ_pos(1:end,1),JZ_pos(1:end,2),JZ_pos(1:end,3),'b*');
grid on
xlabel('x');
ylabel('y');
zlabel('z');
axis([-150,150,-150,150,0,3])
06_126m

4.本算法原理

       基于遗传算法(Genetic Algorithm, GA)的多机无源定位系统(Passive Localization with Multiple Platforms)中的几何 dilution of precision (GDOP) 优化是一种利用生物进化原理来搜索最优传感器配置或目标定位参数,以最小化定位误差的不确定性度量——GDOP的方法。GDOP综合考虑了位置、速度和时间测量误差对定位精度的影响,其值越小意味着定位精度越高。

首先,了解几个基本概念:

  1. 无源定位:无需向目标发射信号,仅依赖于目标反射或辐射的信号来确定目标位置。
  2. 多机系统:指多个观测平台协同工作,共同对一个或多个目标进行定位。
  3. GDOP:几何精度因子,衡量定位精度受测量误差影响的程度,定义为协方差矩阵的特征值乘积的平方根。

       遗传算法是一种模拟自然选择和遗传机制的全局优化算法,主要包括三个核心步骤:选择、交叉和变异。

选择

       选择操作基于每个个体(即一组传感器配置或参数)的适应度值(fitness value),通常与GDOP成反比。适应度越高,被选中参与繁殖的概率越大。选择过程可以通过轮盘赌选择、锦标赛选择等方式实现。

交叉

       交叉操作模拟生物的有性生殖过程,从两个父代个体中交换部分基因以生成新的子代。在多机无源定位问题中,这可能意味着交换两个传感器配置方案的部分元素。

变异

      变异是为了保持种群的多样性,随机改变个体的一个或多个基因值。在定位问题中,这可以体现为随机调整一个或多个传感器的位置或方向。

      GDOP通常与定位系统的设计参数(如观测站布局)紧密相关,其表达式可由观测矩阵H的奇异值分解给出,其中H为各观测站到目标的几何关系矩阵。设H = USV^T,则GDOP可表示为最大奇异值与最小奇异值之比的平方:

        在优化多机无源定位系统的GDOP时,首先需要定义染色体编码方式,例如,每个染色体可以编码为传感器的位置坐标。接下来,通过初始化一个随机生成的种群开始,每一代通过上述遗传操作产生新的种群,同时依据目标函数(即GDOP的倒数)评估每个个体的适应度。算法持续迭代,直到达到预设的停止条件,如最大迭代次数、适应度改善小于阈值或找到满意的GDOP值。

5.完整程序

VVV

http://www.lryc.cn/news/374615.html

相关文章:

  • Linux C语言:多级指针(void指针和const)
  • MicroPython+ESP32 C3开发上云
  • 动态 SQL
  • 功能强大的多功能文档转换工具Neevia Document Converter Pro 7.5.0.241
  • 从零到一,深入浅出大语言模型的奇妙世界
  • ESP8266发送WOL幻数据包实现电脑远程唤醒
  • 用一个ESP32S3-Zero把有线键盘变为无线
  • Redis 7.x 系列【3】多种连接方式
  • 数据结构(DS)C语言版:学习笔记(4):线性表
  • Linux 命令大全
  • [华为北向网管NCE开发教程(6)消息订阅
  • 2024.6.15 英语六级 经验与复盘
  • 计算机专业的未来展望
  • Shell变量的高级用法
  • 【Python/Pytorch - 网络模型】-- SVD算法
  • 全光万兆时代来临:信而泰如何推动F5G-A(50PONFTTR)技术发展
  • 港科夜闻 | 香港科大与香港科大(广州)合推红鸟跨校园学习计划,共享教学资源,促进港穗学生交流学习...
  • 基于Wireshark实现对FTP的抓包分析
  • Vue54-浏览器的本地存储webStorage
  • Linux下Shell脚本基础知识
  • 爬虫初学篇——看完这些还怕自己入门不了?
  • [数据集][目标检测]减速区域检测数据集VOC+YOLO格式1654张1类别
  • OpenGL3.3_C++_Windows(8)
  • GPU的工作原理
  • Linux常⽤服务器构建-samba
  • 【Java】已解决java.lang.UnsupportedOperationException异常
  • 在ubuntu中恢复误删除的文件
  • Sklearn中逻辑回归建模
  • 【ARM】MDK出现报错error: A\L3903U的解决方法
  • 0018__字体的kerning是什么意思