当前位置: 首页 > news >正文

MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?

一. 问题描述

我们在设计表结构的时候,设计规范里面有一条如下规则:

  • 对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。

为什么这么规定?我在网上查了一下,主要基于两个方面

  • 基于存储空间的考虑

  • 基于性能的考虑

网上说Varchar(50)varchar(500)存储空间上是一样的,真的是这样吗?

基于性能考虑,是因为过长的字段会影响到查询性能?

本文我将带着这两个问题探讨验证一下

二.验证存储空间区别

1.准备两张表

CREATE TABLE `category_info_varchar_50` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(50) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='分类';CREATE TABLE `category_info_varchar_500` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(500) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB AUTO_INCREMENT=288135 DEFAULT CHARSET=utf8mb4 COMMENT='分类';

2.准备数据

给每张表插入相同的数据,为了凸显不同,插入100万条数据

DELIMITER $$
CREATE PROCEDURE batchInsertData(IN total INT)
BEGINDECLARE start_idx INT DEFAULT 1;DECLARE end_idx INT;DECLARE batch_size INT DEFAULT 500;DECLARE insert_values TEXT;SET end_idx = LEAST(total, start_idx + batch_size - 1);WHILE start_idx <= total DOSET insert_values = '';WHILE start_idx <= end_idx DOSET insert_values = CONCAT(insert_values, CONCAT('(\'name', start_idx, '\', 0, 0, 0, NOW(), NOW()),'));SET start_idx = start_idx + 1;END WHILE;SET insert_values = LEFT(insert_values, LENGTH(insert_values) - 1); -- Remove the trailing commaSET @sql = CONCAT('INSERT INTO category_info_varchar_50 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';');PREPARE stmt FROM @sql;EXECUTE stmt;SET @sql = CONCAT('INSERT INTO category_info_varchar_500 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';'); PREPARE stmt FROM @sql;EXECUTE stmt;SET end_idx = LEAST(total, start_idx + batch_size - 1);END WHILE;
END$$
DELIMITER ;CALL batchInsertData(1000000);

3.验证存储空间

查询第一张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_50'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

查询第二张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_500'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

4.结论

两张表在占用空间上确实是一样的,并无差别

三.验证性能区别

1.验证索引覆盖查询

select name from category_info_varchar_50 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_500 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_50 order by name;
-- 耗时0.370s
select name from category_info_varchar_500 order by name;
-- 耗时0.379s

通过索引覆盖查询性能差别不大

1.验证索引查询

select * from category_info_varchar_50 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_500 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时 0.011s -0.014s 
-- 增加 order by name 耗时 0.012s - 0.015sselect * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时  0.012s -0.014s 
-- 增加 order by name 耗时 0.014s - 0.017s

索引范围查询性能基本相同, 增加了order By后开始有一定性能差别;

3.验证全表查询和排序

全表无排序

图片

图片

全表有排序
select * from category_info_varchar_50 order by  name ;
--耗时 1.498s
select * from category_info_varchar_500 order by  name  ;
--耗时 4.875s

图片

图片

结论:

全表扫描无排序情况下,两者性能无差异,在全表有排序的情况下, 两种性能差异巨大;

分析原因
varchar50 全表执行sql分析

图片

我发现86%的时花在数据传输上,接下来我们看状态部分,关注Created_tmp_files和sort_merge_passes

图片

图片

Created_tmp_files为3

sort_merge_passes为95

varchar500 全表执行sql分析

图片

增加了临时表排序

图片

图片

Created_tmp_files 为 4

sort_merge_passes为645

关于sort_merge_passes, Mysql给出了如下描述:

Number of merge passes that the sort algorithm has had to do. If this value is large, you may want to increase the value of the sort_buffer_size.

其实sort_merge_passes对应的就是MySQL做归并排序的次数,也就是说,如果sort_merge_passes值比较大,说明sort_buffer和要排序的数据差距越大,我们可以通过增大sort_buffer_size或者让填入sort_buffer_size的键值对更小来缓解sort_merge_passes归并排序的次数。

四.最终结论

至此,我们不难发现,当我们最该字段进行排序操作的时候,Mysql会根据该字段的设计的长度进行内存预估, 如果设计过大的可变长度, 会导致内存预估的值超出sort_buffer_size的大小, 导致mysql采用磁盘临时文件排序,最终影响查询性能

http://www.lryc.cn/news/372959.html

相关文章:

  • 强化RAG:微调Embedding还是LLM?
  • 提取 Excel单元格文本下的超链接
  • 一键安全体检!亚信安全携手鼎捷软件推出企业安全体检活动 正式上线
  • numpy - array(1)
  • 师彼长技以助己(6)递归思维
  • Kali Linux 2024.2
  • 【Spine学习08】之短飘,人物头发动效制作思路
  • chatgpt的命令词
  • 用python把docx批量转为pdf
  • 项目采购管理
  • Elasticsearch 认证模拟题 - 18
  • Python基础-速记笔记
  • 青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3
  • 填表统计预约打卡表单系统(FastAdmin+ThinkPHP+UniApp)
  • IO模型和多路转接
  • 如何完美解决升级 IntelliJ IDEA 最新版之后遇到 Git 记住密码功能失效的问题
  • SpringCloud微服务架构(eureka、nacos、ribbon、feign、gateway等组件的详细介绍和使用)
  • flinksql BUG : flink hologres-cdc source FINISHED
  • 现代密码学-国密算法
  • Postman简介
  • oracle 删除当前用户下所有表
  • 探索C嘎嘎的奇妙世界:第二关---C++的输入与输出
  • 实现思路:Vue 子组件高度不固定下实现瀑布流布局
  • 构建实时搜索与推荐系统:Elasticsearch与业务结合
  • 鸿蒙 如何将base64的图片保存到相册
  • 高速公路智能管理系统:构建安全畅通的数字大动脉
  • 基于Java自习室在线预约系统 的设计与实现
  • 摄像头校准之白平衡畸变坏点
  • 【C++进阶】模板进阶与仿函数:C++编程中的泛型与函数式编程思想
  • OpenCV之cv::Scalar