当前位置: 首页 > news >正文

【强化学习】强化学习数学基础:值函数近似

值函数近似

  • Value Function Approximation
    • Motivating examples: curve fitting
    • Algorithm for state value estimation
      • Objective function
      • Optimization algorithms
      • Selection of function approximators
      • Illustrative examples
      • Summary of the story
      • Theoretical analysis
    • Sarsa with function appriximation
    • Q-learning with function approximation
    • Deep Q-learning
    • 内容来源

Value Function Approximation

Motivating examples: curve fitting

到目前为止,我们都是使用tables表示state和action values。例如,下表是action value的表示:
action value

  • 优势:直观且容易分析
  • 劣势:难以处理较大或者连续的state或者action空间。两个方面:1)存储;2)泛化能力。

举个例子:假定有一个one-dimensional states s1,...,s∣S∣s_1,...,s_{|S|}s1,...,sS,当π\piπ是给定策略的时候,它们的state values是vπ(s1),...,vπ(s∣S∣)v_\pi(s_1),...,v_\pi(s_{|S|})vπ(s1),...,vπ(sS)。假设∣S∣|S|S非常大,因此我们希望用一个简单的曲线近似它们的点以降低内存
An illustration of function appriximation of samples
答案是可以的。
首先我们使用简单的straight line去拟合这些点。假设straight line的方程为
直线的方程
其中:

  • www是参数向量(parameter vector)
  • ϕ(s)\phi(s)ϕ(s)是s的特征向量(feature vector)
  • v^(s,w)\hat{v}(s,w)v^(s,w)www成线性关系(当然,也可以是非线性的)

这样表示的好处是:

  • 表格形式需要存储∣S∣|S|S个state values,现在,只需要存储两个参数aaabbb
  • 每次我们想要使用s的值,我们可以计算ϕT(s)w\phi^T(s)wϕT(s)w
  • 但是这个好处也不是免费的,它需要付出一些代价:state values不能被精确地表示,这也是为什么这个方法被称为value approximation。

既然直线不够准确,那么是否可以使用高阶的曲线呢?当然可以。第二,我们使用一个second-order curve去拟合这些点
second-order curve
在这种情况下:

  • wwwϕ(s)\phi(s)ϕ(s)的维数增加了,但是values可以被拟合的更加精确。
  • 尽管v^(s,w)\hat{v}(s,w)v^(s,w)sss是非线性的,但是它与www是线性的。这种非线性的性质包含在ϕ(s)\phi(s)ϕ(s)中。

当然,还可以继续增加阶数。第三,使用一个更加high-order polynomial curves(多项式曲线)或者其他复杂的曲线来拟合这些点

  • 好处是:更好的approximate
  • 坏处是:需要更多的parameters

小结一下:

  • Idea:value function approximation的idea是用一个函数v^(s,w)\hat{v}(s, w)v^(s,w)来拟合vπ(s)v_\pi(s)vπ(s),这个函数里边有参数www,所以被称为parameterized function,www就是parameter vector。
  • 这样做的好处
    • 1)节省存储www的维数远小于∣S∣|S|S
    • 2)泛化能力:当一个state sss是visited,参数www是updated,这样某些其他unvisited states的values也可以被updated。按这种方式,the learned values可以泛化到unvisited states。

Algorithm for state value estimation

Objective function

首先,用一种更正式的方式:

  • vπ(s)v_\pi(s)vπ(s)v^(s,w)\hat{v}(s,w)v^(s,w)分别表示true state value和approximate函数.
  • 我们的目标是找到一个最优的www,使得v^(s,w)\hat{v}(s,w)v^(s,w)对于每个sss达到最优的近似vπ(s)v_\pi(s)vπ(s)
  • 这个问题就是一个policy evaluation问题,稍后我们将会把它推广到policy improvement。
  • 为了找到最优的www,我们需要两步:
    • 第一步定义一个目标函数(object function)
    • 第二步是优化这个目标函数。

The objective function is:J(w)=E[(vπ(S)−v^(S,w))2]J(w)=\mathbb{E}[(v_\pi(S)-\hat{v}(S,w))^2]J(w)=E[(vπ(S)v^(S,w))2]

  • 我们的目标是找到最优的www,这样可以最小化J(w)J(w)J(w)
  • The expectation is with respect to the random variable S∈SS\in \mathcal{S}SSSSS的概率分布是什么?
    • This is often confusing because we have not discussed the probability distribution of states so far
    • There are several ways to define the probability distribution of SSS.

第一种方式是使用一个uniform distribution.

  • 它对待每个states都是同等的重要性,通过将每个state的概率设置为1/∣S∣1/|\mathcal{S}|1/∣S
  • 这种情况下,目标函数变为:J(w)=E[(vπ(S)−v^(S,w))2]=1∣S∣∑s∈S(vπ(s)−v^(s,w))2J(w)=\mathbb{E}[(v_\pi (S)-\hat{v}(S,w))^2]=\frac{1}{|\mathcal{S}|}\sum_{s\in \mathcal{S}}(v_\pi(s)-\hat{v}(s,w))^2J(w)=E[(vπ(S)v^(S,w))2]=S1sS(vπ(s)v^(s,w))2
  • 虽然平均分布是非常直观的,但是有一个问题:这里假设所有状态都是平等的,但是实际上可能不是那么回事。例如,某些状态在一个策略下可能几乎不会访问到。因此这种方式没有考虑一个给定策略下Markov process的实际动态变化。

第二种方式是使用stationary distribution

  • Stationary distribution is an important concept. 它描述了一个Markov process的long-run behavior
  • {dπ(s)}s∈S\{d_\pi(s)\}_{s\in \mathcal{S} }{dπ(s)}sS表示基于策略π\piπ的Markov process的stationary distribution。根据定义有,dπ(s)≥0d_\pi(s)\ge 0dπ(s)0∑s∈Sdπ(s)=1\sum_{s\in \mathcal{S}}d_\pi(s)=1sSdπ(s)=1
  • 在这种情况下,目标函数被重写为:J(w)=E[(vπ(S)−v^(S,w))2]=∑s∈Sdπ(s)(vπ(s)−v^(s,w))2J(w)=\mathbb{E}[(v_\pi (S)-\hat{v}(S,w))^2]=\sum_{s\in \mathcal{S}}d_\pi (s)(v_\pi(s)-\hat{v}(s,w))^2J(w)=E[(vπ(S)v^(S,w))2]=sSdπ(s)(vπ(s)v^(s,w))2这里的dπ(s)d_\pi(s)dπ(s)就扮演了权重的意思,这个函数是一个weighted squared error。
  • 由于更频繁地visited states,具有更高的dπ(s)d_\pi(s)dπ(s)值,它们在目标函数中的权重也比那些很少访问的states的权重高。

对于stationary distribution更多的介绍:

  • Distribution:state的Distribution
  • Stationary : Long-run behavior
  • Summary: 智能体agent根据一个策略运行一个较长时间之后,the probability that the agent is at any state can be described by this distribution.

需要强调的是:

  • Stationary distribution 也被称为steady-state distribution,或者limiting distribution
  • 它在理解value functional approximation method方面是非常重要的
  • 对于policy gradient method也是非常重要的。

举个例子:如图所示,给定一个探索性的策略。让agent从一个状态出发然后跑很多次,根据这个策略,然后看一下会发生什么事情。

  • nπ(s)n_\pi(s)nπ(s)表示次数,sss has been visited in a very long episode generated by π\piπ
  • 然后,dπ(s)d_\pi(s)dπ(s)可以由下式估计:dπ(s)≈nπ(s)∑s′∈Snπ(s′)d_\pi(s)\approx \frac{n_\pi(s)}{\sum_{s'\in \mathcal{S}}n_\pi(s') }dπ(s)sSnπ(s)nπ(s)
    l例子
    The converged values can be predicted because they are the entries of dπd_\pidπdπT=dπTPπd_\pi^T=d_\pi^TP_\pidπT=dπTPπ
    对于上面的例子,有PπP_\piPπPπ=[0.30.10.600.10.300.60.100.30.600.10.10.8]P_\pi=\begin{bmatrix}0.3 & 0.1 & 0.6 & 0\\0.1 & 0.3 & 0 & 0.6\\0.1 & 0 & 0.3 & 0.6\\0 & 0.1 & 0.1 & 0.8\end{bmatrix}Pπ=0.30.10.100.10.300.10.600.30.100.60.60.8可以计算出来它左边对应于eigenvalue等于1的那个eigenvector:dπ=[0.0345,0.1084,0.1330,0.7241]Td_\pi=[0.0345, 0.1084, 0.1330, 0.7241]^Tdπ=[0.0345,0.1084,0.1330,0.7241]T

Optimization algorithms

当我们有了目标函数,下一步就是优化它。为了最小化目标函数J(w)J(w)J(w),我们可以使用gradient-descent算法:wk+1=wk−αk∇wJ(wk)w_{k+1}=w_k-\alpha_k\nabla_w J(w_k)wk+1=wkαkwJ(wk)它的true gradient是:
true gradient
这个true gradient需要计算一个expectation。我们可以使用stochastic gradient替代the true gradient:wt+1=wt+αt(vπ(st)−v^(st,wt))∇wv^(st,wt)w_{t+1}=w_t+\alpha_t (v_\pi(s_t)-\hat{v}(s_t,w_t))\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt(vπ(st)v^(st,wt))wv^(st,wt)其中sts_tstS\mathcal{S}S的一个采样。这里2αk2\alpha_k2αk合并到了αk\alpha_kαk

  • 这个算法在实际当中是不能使用的,因为它需要true state value vπv_\pivπ,这是未知的。
  • 可以使用vπ(st)v_\pi(s_t)vπ(st)一个估计来替代它,这样该算法就可以实现了

那么如何进行代替呢?有两种方法:

  • 第一种,Monte Carlo learning with function approximation
    gtg_tgt表示在episode中从sts_tst开始的discounted return,然后使用gtg_tgt近似vπ(st)v_\pi(s_t)vπ(st)。该算法变为wt+1=wt+αt(gt−v^(st,wt))∇wv^(st,wt)w_{t+1}=w_t+\alpha_t (g_t-\hat{v}(s_t,w_t))\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt(gtv^(st,wt))wv^(st,wt)
  • 第二种,TD learning with function approximate
    By the spirit of TD learning, rt+1+γv^(st+1,wt)r_{t+1}+\gamma \hat{v}(s_{t+1}, w_t)rt+1+γv^(st+1,wt)可以视为vπ(st)v_\pi(s_t)vπ(st)的一个近似。因此,算法变为:wt+1=wt+αt[rt+1+γv^(st+1,wt)]∇wv^(st,wt)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \hat{v}(s_{t+1}, w_t)]\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt[rt+1+γv^(st+1,wt)]wv^(st,wt)

TD learning with function approximation的伪代码:
TD learning
该方法仅能估计在给定policy情况下的state values,但是对于后面的算法的理解是非常重要的。

Selection of function approximators

如何选取函数v^(s,w)\hat{v}(s,w)v^(s,w)

  • 第一种方法,也是之前被广泛使用的,就是linear functionv^(s,w)=ϕT(s)w\hat{v}(s,w)=\phi^T(s)wv^(s,w)=ϕT(s)w这里的ϕ(s)\phi(s)ϕ(s)是一个feature vector, 可以是polynomial basis,Fourier basis,…。
  • 第二种方法是,现在广泛使用的,就是用一个神经网络作为一个非线性函数近似器。神经网络的输入是state,输出是v^(s,w)\hat{v}(s,w)v^(s,w),网络参数是www

在线性的情况中v^(s,w)=ϕT(s)w\hat{v}(s,w)=\phi^T(s)wv^(s,w)=ϕT(s)w,我们有∇wv^(st,wt)=ϕ(s)\nabla_w \hat{v}(s_t, w_t)=\phi(s)wv^(st,wt)=ϕ(s)将这个带入到TD算法wt+1=wt+αt[rt+1+γv^(st+1,wt)−v^(st,wt)]∇wv^(st,wt)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \hat{v}(s_{t+1}, w_t)-\hat{v}(s_t,w_t)]\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt[rt+1+γv^(st+1,wt)v^(st,wt)]wv^(st,wt)就变成了wt+1=wt+αt[rt+1+γϕT(st+1)wt−ϕT(st)wt]ϕ(st)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \phi^T(s_{t+1})w_t-\phi^T(s_t)w_t]\phi(s_t)wt+1=wt+αt[rt+1+γϕT(st+1)wtϕT(st)wt]ϕ(st)这个具有线性函数近似的TD learning算法称为TD-Linear
线性函数近似的劣势是:

  • 难以去选择合适的feature vector.
    线性函数近似的优势是:
  • TD算法在线性情况下的理论上的性质很容易理解和分析,与非线性情况相比
  • 线性函数近似仍然在某些情况下使用:tabular representation是linear function approximation的一种少见的特殊情况。

那么为什么tabular representation是linear function approximation的一种少见的特殊情况?

  • 首先,对于state sss,选择一个特殊的feature vectorϕ(s)=es∈R∣S∣\phi(s)=e_s\in \mathbb{R}^{|\mathcal{S}|}ϕ(s)=esRS其中ese_ses是一个vector,其中第sss个实体为1,其他为0.
  • 在这种情况下v^(st,wt)=esTw=w(s)\hat{v}(s_t, w_t)=e_s^Tw=w(s)v^(st,wt)=esTw=w(s)其中w(s)w(s)w(s)www的第s个实体。

回顾TD-Linear算法:wt+1=wt+αt[rt+1+γϕT(st+1)wt−ϕT(st)wt]ϕ(st)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \phi^T(s_{t+1})w_t-\phi^T(s_t)w_t]\phi(s_t)wt+1=wt+αt[rt+1+γϕT(st+1)wtϕT(st)wt]ϕ(st)

  • ϕ(st)=es\phi(s_t)=e_sϕ(st)=es,上面的算法变成了wt+1=wt+αt[rt+1+γwt(st+1)−wt(st)]estw_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma w_t(s_{t+1})-w_t(s_t)]e_{s_t}wt+1=wt+αt[rt+1+γwt(st+1)wt(st)]est这是一个向量等式,仅仅更新wtw_twt的第sss个实体。
  • 将上面式子两边乘以estTe_{s_t}^TestT,得到wt+1(st)=wt(st)+αt[rt+1+γwt(st+1)−wt(st)]w_{t+1}(s_t)=w_t(s_t)+\alpha_t[r_{t+1}+\gamma w_t(s_{t+1})-w_t(s_t)]wt+1(st)=wt(st)+αt[rt+1+γwt(st+1)wt(st)]这就是基于表格形式的TD算法。

Illustrative examples

考虑一个5×5的网格世界示例:

  • 给定一个策略:π(a∣s)=0.2\pi(a|s)=0.2π(as)=0.2,对于任意的s,as,as,a
  • 我们的目标是基于该策略,估计state values(策略评估问题)
  • 总计有25种state values。
  • 设置rforbidden=rboundary=−1,rtarget=1,γ=0.9r_{forbidden}=r_{boundary}=-1, r_{target}=1, \gamma=0.9rforbidden=rboundary=1,rtarget=1,γ=0.9
    网格世界示例

Ground truth:

  • true state values和3D可视化
    true state value和3D可视化

Experience samples:

  • 500 episodes were generated following the given policy
  • Each episode has 500 steps and starts from a randomly selected state-action pair following a uniform distribution

为了对比,首先给出表格形式的TD算法(TD-Table)的结果:
TD-Table

那么看一下TD-Linear是否也能很好估计出来state value呢?
第一步就是要建立feature vector。要建立一个函数,这个函数也对应一个曲面,这个曲面能很好地拟合真实的state value对应的曲面。那么函数对应的曲面最简单的情况是什么呢?就是平面,所以这时候选择feature vector等于ϕ(s)=[1xy]∈R3\phi(s)=\begin{bmatrix}1 \\x \\y\end{bmatrix}\in \mathbb{R}^3ϕ(s)=1xyR3在这种情况下,近似的state value是v^(s,w)=ϕT(s)w=[1,x,y][w1w2w3]=w1+w2x+w3y\hat{v}(s,w)=\phi^T(s)w=[1, x, y]\begin{bmatrix}w_1 \\w_2 \\w_3\end{bmatrix} =w_1+w_2x+w_3yv^(s,w)=ϕT(s)w=[1,x,y]w1w2w3=w1+w2x+w3y注意,ϕ(s)\phi(s)ϕ(s)也可以定义为ϕ(s)=[x,y,1]T\phi(s)=[x, y, 1]^Tϕ(s)=[x,y,1]T,其中这里边的顺序是不重要的。

将刚才的feature vector带入TD-Linear算法中,得到:
TD-Linear

  • 这里边的趋势是正确的,但是有一些错误,这是由于用平面拟合的本身方法的局限性。
  • 我们尝试使用一个平面去近似一个非平面,这是非常困难的。

为了提高近似能力,可以使用high-order feature vectors,这样也就有更多的参数。

  • 例如,我们考虑这样一个feature vector:ϕ(s)=[1,x,y,x2,y2,xy]T∈R6\phi(s)=[1, x, y, x^2, y^2, xy]^T\in \mathbb{R}^6ϕ(s)=[1,x,y,x2,y2,xy]TR6在这种情况下,有v^(s,w)=ϕT(s)w=w1+w2x+w3y+w4x2+w5y2+w6xy\hat{v}(s,w)=\phi^T(s)w=w_1+w_2x+w_3y+w_4x^2+w_5y^2+w_6xyv^(s,w)=ϕT(s)w=w1+w2x+w3y+w4x2+w5y2+w6xy这对应一个quadratic surface。
  • 可以进一步增加feature vector的维度ϕ(s)=[1,x,y,x2,y2,xy,x3,y3,x2y,xy2]T∈R10\phi(s)=[1, x, y, x^2, y^2, xy, x^3, y^3, x^2y, xy^2]^T\in \mathbb{R}^10ϕ(s)=[1,x,y,x2,y2,xy,x3,y3,x2y,xy2]TR10

通过higher-order feature vectors的TD-Linear算法的结果:
higher-order feature vectors的TD-Linear算法的结果

Summary of the story

1)首先从一个objective function出发J(w)=E[(vπ(S)−v^(S,w))2]J(w)=\mathbb{E}[(v_\pi(S)-\hat{v}(S, w))^2]J(w)=E[(vπ(S)v^(S,w))2]这个目标函数表明这是一个policy evaluation问题.
2)然后对这个objective function进行优化,优化方法使用gradient-descent algorithm:wt+1=wt+αt(vπ(st)−v^(st,wt))∇wv^(st,wt)w_{t+1}=w_t+\alpha_t (v_\pi(s_t)-\hat{v}(s_t,w_t))\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt(vπ(st)v^(st,wt))wv^(st,wt)但是问题是里边有一个vπ(st)v_\pi(s_t)vπ(st)是不知道的。
3)第三,使用一个近似替代算法中的true value function vπ(st)v_\pi(s_t)vπ(st),得到下面算法:wt+1=wt+αt[rt+1+γv^(st+1,wt)−v^(st,wt)]∇wv^(st,wt)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \hat{v}(s_{t+1}, w_t)-\hat{v}(s_t,w_t)]\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt[rt+1+γv^(st+1,wt)v^(st,wt)]wv^(st,wt)

尽管上面的思路对于理解基本思想是非常有帮助的,但是它在数学上是不严谨的,因为做了替换操作

Theoretical analysis

一个基本的结论,这个算法wt+1=wt+αt[rt+1+γv^(st+1,wt)−v^(st,wt)]∇wv^(st,wt)w_{t+1}=w_t+\alpha_t[r_{t+1}+\gamma \hat{v}(s_{t+1}, w_t)-\hat{v}(s_t,w_t)]\nabla_w \hat{v}(s_t, w_t)wt+1=wt+αt[rt+1+γv^(st+1,wt)v^(st,wt)]wv^(st,wt)不是去minimize下面的objective function:J(w)=E[(vπ(S)−v^(S,w))2]J(w)=\mathbb{E}[(v_\pi(S)-\hat{v}(S, w))^2]J(w)=E[(vπ(S)v^(S,w))2]

实际上,有多种objective functions

  • Objective function 1:True value errorJ(w)=E[(vπ(S)−v^(S,w))2]=∣∣v^(w)−vπ∣∣D2J(w)=\mathbb{E}[(v_\pi(S)-\hat{v}(S, w))^2]=||\hat{v}(w)-v_\pi||_D^2J(w)=E[(vπ(S)v^(S,w))2]=∣∣v^(w)vπD2
  • Objective function 2:Bellman errorJBE(w)=∣∣v^(w)−(rπ+γPπv^(w))∣∣D2≐∣∣v^(w)−Tπ(v^(w))∣∣D2J_{BE}(w)=||\hat{v}(w)-(r_\pi+\gamma P_{\pi}\hat{v}(w))||_D^2\doteq ||\hat{v}(w)-T_\pi(\hat{v}(w))||_D^2JBE(w)=∣∣v^(w)(rπ+γPπv^(w))D2∣∣v^(w)Tπ(v^(w))D2其中Tπ(x)≐rπ+γPπxT_\pi(x)\doteq r_\pi+\gamma P_\pi xTπ(x)rπ+γPπx
  • Objective function 2:Projected Bellman errorJPBE(w)=∣∣v^(w)−MTπ(v^(w))∣∣D2J_{PBE}(w)=||\hat{v}(w)-MT_\pi(\hat{v}(w))||_D^2JPBE(w)=∣∣v^(w)MTπ(v^(w))D2其中MMM是一个projection matrix(投影矩阵)

简而言之,上面提到的TD-Linear算法在最小化projected Bellman error

Sarsa with function appriximation

到目前为止,我们仅仅是考虑state value estimation的问题,也就是我们希望v^≈vπ\hat{v}\approx v_\piv^vπ。为了搜索最优策略,我们需要估计action values。

The Sarsa algorithm with value function approximation是:
Sarsa algorithm with value function approximation
这个上一节介绍的TD算法是一样的,只不过将v^\hat{v}v^换成了q^\hat{q}q^

为了寻找最优策略,我们将policy evaluation(上面算法做的事儿)和policy improvement结合。下面给出Sarsa with function approximation的伪代码:
Sarsa with function approximation的伪代码
举个例子:

  • Sarsa with linear function approximation
  • rforbidden=rboundary=−10,rtarget=1,γ=0.9,α=0.001,ϵ=0.1r_{forbidden}=r_{boundary}=-10, r_{target}=1, \gamma=0.9, \alpha=0.001, \epsilon=0.1rforbidden=rboundary=10,rtarget=1,γ=0.9,α=0.001,ϵ=0.1
    Sarsa with *linear function approximation*

Q-learning with function approximation

类似地,tabular Q-learning也可以扩展到value function approximation的情况。

The q-value更新规则是:
The q-value更新规则
这与上面的Sarsa算法相同,除了q^(st+1,at+1,wt)\hat{q}(s_{t+1}, a_{t+1}, w_t)q^(st+1,at+1,wt)被替换为max⁡a∈A(st+1)q^(st+1,a,wt)\max_{a\in \mathcal{A}(s_{t+1})}\hat{q}(s_{t+1}, a, w_t)maxaA(st+1)q^(st+1,a,wt)

Q-learning with function approximation伪代码(on-policy version)
Q-learning with function approximation
举个例子:

  • Q-learning with linear function approximation
  • rforbidden=rboundary=−10,rtarget=1,γ=0.9,α=0.001,ϵ=0.1r_{forbidden}=r_{boundary}=-10, r_{target}=1, \gamma=0.9, \alpha=0.001, \epsilon=0.1rforbidden=rboundary=10,rtarget=1,γ=0.9,α=0.001,ϵ=0.1
    Q-learning with *linear function approximation*

Deep Q-learning

Deep Q-learning算法又被称为deep Q-network (DQN):

  • 最早的一个和最成功的一个将深度神经网络算法引入到强化学习中
  • 神经网络的角色是一个非线性函数approximator
  • 与下面的算法不同,是由于训练一个网络的方式:
    The q-value更新规则
    Deep Q-learning旨在最小化目标函数/损失函数
    Q-learning目标函数
    其中(S,A,R,S′)(S,A,R,S')(S,A,R,S)是随机变量。
    Bellman optimality error
    那么如何最小化目标函数呢?使用Gradient-descent!但是如何计算目标函数的梯度还是有一些tricky。这是因为在目标函数中有两个位置有www
    J(w)
    也就是说参数w不仅仅只出现在q^(S,A,w)\hat{q}(S,A,w)q^(S,A,w)中,还出现在它的前面。这里用yyy表示:y≐R+γmax⁡a∈A(S′)q^(S′,a,w)y\doteq R+\gamma \max_{a\in \mathcal{A}(S')} \hat{q}(S',a,w)yR+γaA(S)maxq^(S,a,w)

为了简单起见,我们可以假设wwwyyy中是固定的(至少一定时间内),当我们计算梯度的时候。为了这样做,我们引入两个network。

  • 一个是main network,用以表示q^(s,a,w)\hat{q}(s,a,w)q^(s,a,w)
  • 另一个是target network q^(s,a,wT)\hat{q}(s,a,w_T)q^(s,a,wT)

用这两个network吧上面目标函数中的两个q^\hat{q}q^区分开来,就得到了如下式子:
新的目标函数
其中wTw_TwT是target network parameter。

wTw_TwT是固定的,可以计算出来JJJ的梯度如下:
Deep Q-learning

  • 这就是Deep Q-learning的基本思想,使用gradient-descent算法最小化目标函数。
  • 然而,这样的优化过程涉及许多重要的技巧。

第一个技巧:使用了两个网络,一个是main network,另一个是target network。
为什么要使用两个网络呢?在数学上来说因为计算梯度的时候会非常的复杂,所以先去固定一个,然后再去计算另一个,这样就需要两个网络来实现。
具体实现的细节:

  • wwwwTw_TwT分别表示mean network和target network的参数,它们初始化的时候是一样的。
  • 在每个iteration中,从replay buffer中draw一个mini-batch样本{(s,a,r,s′)}\{(s,a,r,s')\}{(s,a,r,s)}
  • 网络的输入包括state sss和action aaa,目标输出是yT≐r+γmax⁡a∈A(s′)q^(s′,a,wT)y_T\doteq r+\gamma \max_{a\in \mathcal{A}(s')} \hat{q}(s',a,w_T)yTr+γmaxaA(s)q^(s,a,wT)。然后我们直接基于the mini-batch {(s,a,r,s′)}\{(s,a,r,s')\}{(s,a,r,s)}最小化TD error或者称为loss function (yT−q^(s,a,w))2(y_T-\hat{q}(s,a,w))^2(yTq^(s,a,w))2。这样一段时间后,参数w发生变化,再将其赋给wTw_TwT,再用来训练www

另一个技巧Experience replay(经验回放)
问题:什么是Experience replay
回答:

  • 我们收集一些experience samples之后,we do NOT use these samples in the order they were collected
  • Instead,我们将它们存储在一个set中,称为replay buffer B≐{(s,a,r,s′)}\mathcal{B}\doteq \{(s, a, r, s')\}B{(s,a,r,s)}
  • 每次我们训练neural network,我们可以从replay buffer中draw a mini-batch的random samples
  • 取出的samples,称为experience replay,应当按照一个均匀分布的方式,即每个experience被replay的机会是相等的。

问题:为什么在deep Q-learning中要用experience replay为什么replay必须要按照一个uniform distribution的方式?
回答:这个回答依赖于下面的objective function
目标函数

  • (S,A)∼d(S,A)\sim d(S,A)d(S,A)(S,A)(S,A)是一个索引,并将其视为一个single random variable。
  • R∼p(R∣S,A),S′∼p(S′∣S,A)R\sim p(R|S,A), S'\sim p(S'|S,A)Rp(RS,A),Sp(SS,A)RRRSSS由system model确定
  • state-action pair (S,A)(S,A)(S,A)的分布假定是uniform.
  • 然而,样本采集不是按照均匀分布来的,因为它们是由某个policies按顺序生成的。
  • 为了打破顺序采样样本的关联,我们才从replay buffer中按照uniformly方式drawing samples,也就是experience replay technique
  • 这是在数学上为什么experience replay是必须的,以及为什么experience replay必须是uniform的原因。

回顾tabular的情况:

  • 问题1:为什么tabular Q-learning没有要求experience replay?
    • 回答:没有uniform distribution的需要
  • 问题2:为什么Deep Q-learning 涉及distribution?
    • 回答:因为在deep Q-learning的情况下,目标函数是一个在所有(S,A)(S,A)(S,A)之上的scale average。tabular case没有涉及SSS或者AAA的任何distribution。在tabular情况下算法旨在求解对于所有的(s,a)(s,a)(s,a)的一组方程(Bellman optimality equation)。
  • 问题3:可以在tabular Q-learning中使用experience replay吗?
    • 回答:可以,而且还会让sample更加高效,因为同一个sample可以用多次。

再次给出Deep Q-learning的伪代码(off-policy version)
Deep Q-learning
需要澄清的几个问题:

  • 为什么没有策略更新?因为这里是off-policy
  • 为什么没有使用之前导出的梯度去更新策略?因为之前导出梯度的算法比较底层,它可以指导我们去生成现在的算法,但是要遵循神经网络批量训练的黑盒特性,然后更好地高效地训练神经网络
  • 这里网络的input和output与DQN原文中的不一样。原文中是on-policy的,这里是off-policy的。

举个例子:目标是learn optimal action values for every state-action pair。一旦得到最优策略,最优greedy策略可以立即得到。
问题设置:
问题设置
仿真结果:
仿真结果1
如果我们仅仅使用100步的一个single episode将会发生什么?也就是数据不充分的情况
a single episode of 100 steps
可以看出,好的算法是需要充分的数据才能体现效果的。

内容来源

  1. 《强化学习的数学原理》 西湖大学工学院赵世钰教授 主讲
  2. 《动手学强化学习》 俞勇 著
http://www.lryc.cn/news/37150.html

相关文章:

  • JVM系列——Java与线程,介绍线程原理和操作系统的关系
  • C++打开文件夹对话框之BROWSEINFO
  • Nuxt项目配置、目录结构说明-实战教程基础-Day02
  • 单链表的头插,尾插,头删,尾删等操作
  • Qt扫盲-QProcess理论总结
  • JAVA进阶 —— Steam流
  • Ubuntu Protobuf 安装(测试有效)
  • 驱动程序开发:FTP服务器和OpenSSH的移植与搭建、以及一些笔记
  • 优化改进YOLOv5算法之添加GIoU、DIoU、CIoU、EIoU、Wise-IoU模块(超详细)
  • windows电脑pc如何使用svn获取文档和代码
  • ROS1学习笔记:tf坐标系广播与监听的编程实现(ubuntu20.04)
  • ​力扣解法汇总1590. 使数组和能被 P 整除
  • Spring源码阅读(基础)
  • 服务搭建篇(九) 使用GitLab+Jenkins搭建CI\CD执行环境 (上) 基础环境搭建
  • CDC 长沙站丨云原生技术研讨会:数字兴链,云化未来!
  • A.特定领域知识图谱知识推理方案:知识图谱推理算法综述[二](DTransE/PairRE:基于表示学习的知识图谱链接预测算法)
  • 香港酒店模拟分析项目报告--使用tableau、python、matlab
  • 第18天-商城业务(商品检索服务,基于Elastic Search完成商品检索)
  • 5.2 对射式红外传感器旋转编码器计次
  • 【数据库概论】第九章 关系查询处理和查询优化
  • (WIP) my cloud test bed (by quqi99)
  • git | git 2023 详细版
  • camunda流程引擎基本使用(笔记)
  • JS之数据结构与算法
  • CnOpenData·A股上市企业数字化转型指数数据
  • VMware16pro虚拟机安装全过程
  • 阿里云第六代云服务器最新价格表(计算型c6、通用型g6和内存型r6)
  • 微小目标识别研究(2)——基于K近邻的白酒杂质检测算法实现
  • 2022-06-14至2022-08-11 关于复现MKP算法的总结与反思
  • IBMMQ教程二(window版安装)