当前位置: 首页 > news >正文

[12] 使用 CUDA 进行图像处理

使用 CUDA 进行图像处理

  • 当下生活在高清摄像头的时代,这种摄像头能捕获高达1920*1920像素的高解析度画幅。想要实施的处理这么多的数据,往往需要几个TFlops地浮点处理性能,这些要求CPU也无法满足
  • 通过在代码中使用CUDA,可以利用GPU提供的强大地计算能力
  • CUDA支持多维地Grid和块,因此可以根据图像地尺寸、数据量大小,合理的分配块和线程进行图像处理
  • 简单图像处理过程地特定编程模式:
for(int i=0;i<image_height;i++)
{for(int j=0;j<image_width;j++){//Pixel Processing code for pixel located at(i,j)}
}
  • 将像素处理映射到CUDA地一批线程上:
int i = blockidx.y * blockDim.y + threadIdx.y
int j = blockidx.x * blockDim.x + threadIdx.x

1. 在GPU上通过CUDA进行直方图统计

  • 首先介绍CPU版本的直方图统计,实现如下:
int h_a[1000] = Random values between 0 and 15//假设图像取值范围在【0-15】,定义数组并初始化
int histogram[16];
for(int i=0;i<16;i++)
{histogram[i] = 0;
}
//统计每个值的个数
for(int i=0;i<1000;i++)
{histogram[h_a[i]]+=1;
}
  • 下面写一个同样功能的GPU代码,我们将使用3种不同的方法写这个代码,前两种方法的内核代码如下:
__global__ void histogram_without_atomic(int* d_b, int* d_a)
{int tid = threadIdx.x + blockDim.x * blockIdx.x;int item = d_a[tid];if (tid < SIZE){d_b[item]++;}}__global__ void histogram_atomic(int* d_b, int* d_a)
{int tid = threadIdx.x + blockDim.x * blockIdx.x;int item = d_a[tid];if (tid < SIZE){atomicAdd(&(d_b[item]), 1);}
}
  • 第一个函数是最简单方式实现的直方图统计,每个线程读取 1 个元素值。使用线程ID作为输入数组的索引获取该元素的数值,然后此值再将对应的d_b结果数组中的索引位置处进行 +1 操作。最后d_b数组应该包含输入数据中0-15之间每个值的频次,这种方式将得出错误的结果,因为对相同的存储器位置将有大量的线程试图同时进行不安全的修改,其运行结果如下:
    在这里插入图片描述
  • 第二个函数用原子操作实现统计,避免多线程并行时的资源占用导致的计算异常问题,其计算结果如下:
    在这里插入图片描述
  • main函数如下:
int main()
{//定义设备变量并分配内存int h_a[SIZE];for (int i = 0; i < SIZE; i++) {h_a[i] = i % NUM_BIN;}int h_b[NUM_BIN];for (int i = 0; i < NUM_BIN; i++) {h_b[i] = 0;}// 声明GPU指针变量int* d_a;int* d_b;// 分配GPU变量内存cudaMalloc((void**)&d_a, SIZE * sizeof(int));cudaMalloc((void**)&d_b, NUM_BIN * sizeof(int));// transfer the arrays to the GPUcudaMemcpy(d_a, h_a, SIZE * sizeof(int), cudaMemcpyHostToDevice);cudaMemcpy(d_b, h_b, NUM_BIN * sizeof(int), cudaMemcpyHostToDevice);// 进行直方图统计//histogram_without_atomic << <((SIZE + NUM_BIN - 1) / NUM_BIN), NUM_BIN >> > (d_b, d_a);histogram_atomic << <((SIZE+NUM_BIN-1) / NUM_BIN), NUM_BIN >> >(d_b, d_a);// copy back the sum from GPUcudaMemcpy(h_b, d_b, NUM_BIN * sizeof(int), cudaMemcpyDeviceToHost);printf("Histogram using 16 bin without shared Memory is: \n");for (int i = 0; i < NUM_BIN; i++) {printf("bin %d: count %d\n", i, h_b[i]);}// free GPU memory allocationcudaFree(d_a);cudaFree(d_b);return 0;
}
  • 当我们试图测量使用了原子操作的该代码的性能的时候,你会发现相比CPU的性能,对于很大规模的数组,GPU的实现更慢。这就引入了一个问题:我们真的应当使用CUDA进行直方图统计吗?如果必须能否将这个计算更快些?
  • 这两个问题的答案都是:YES 。如果我们在一个块中用共享内存进行直方图统计,最后再将每个块的部分统计结果叠加到全局内存上的最终结果上去。这样就能加速该操作。这是因为整数加法满足交换律。我需要补充的是:只有当原始数据就在GPU的显存上的时候,才应当考虑使用GPU计算,否则完全不应当 cudaMemcpy 过来再计算,因为仅 cudaMemcpy 的时间就将等于或者大于 CPU 计算的时间,用共享内存进行直方图统计的内核函数代码实现如下:
#include <stdio.h>
#include <cuda_runtime.h>#define SIZE 1000
#define NUM_BIN 256__global__ void histogram_shared_memory(int* d_b, int* d_a)
{int tid = threadIdx.x + blockDim.x * blockIdx.x;int offset = blockDim.x * gridDim.x;__shared__ int cache[256];cache[threadIdx.x] = 0;__syncthreads();while (tid < SIZE){atomicAdd(&(cache[d_a[tid]]), 1);tid += offset;}__syncthreads();atomicAdd(&(d_b[threadIdx.x]), cache[threadIdx.x]);
}
  • 我们要为当前的每个块都统计一次局部结果,所以需要先将共享内存清空,然后用类似之前的方式在共享内存中进行直方图统计。这种情况下,每个块只会统计部分结果存储在各自的共享内存中,并非像以前那样直接统计为全局内存上的总体结果。
  • 本例中,块中256个线程进行共享内存上的256个元素的访问,而原本的代码则在全局内存上的16个元素位置上进行访问。因为共享内存本身要比全局内存具有更高效的并行访问性能,同时将16个统一的竞争访问的位置放宽到了每个共享内存上的256个竞争位置,这两个因素共同缩小了原子操作累计统计的时间。
  • 最终还需要进行一次原子操作,将每个块的共享内存上的部分统计结果累加到全局内存上的最终统计结果。因为整数加法满足交换律,我们不需要担心每个块执行的顺序。
  • main函数如上一个类似:
int main()
{// generate the input array on the hostint h_a[SIZE];for (int i = 0; i < SIZE; i++) {//h_a[i] = bit_reverse(i, log2(SIZE));h_a[i] = i % NUM_BIN;}int h_b[NUM_BIN];for (int i = 0; i < NUM_BIN; i++) {h_b[i] = 0;}// declare GPU memory pointersint* d_a;int* d_b;// allocate GPU memorycudaMalloc((void**)&d_a, SIZE * sizeof(int));cudaMalloc((void**)&d_b, NUM_BIN * sizeof(int));// transfer the arrays to the GPUcudaMemcpy(d_a, h_a, SIZE * sizeof(int), cudaMemcpyHostToDevice);cudaMemcpy(d_b, h_b, NUM_BIN * sizeof(int), cudaMemcpyHostToDevice);// launch the kernelhistogram_shared_memory << <SIZE / 256, 256 >> > (d_b, d_a);// copy back the result from GPUcudaMemcpy(h_b, d_b, NUM_BIN * sizeof(int), cudaMemcpyDeviceToHost);printf("Histogram using 16 bin is: ");for (int i = 0; i < NUM_BIN; i++) {printf("bin %d: count %d\n", i, h_b[i]);}// free GPU memory allocationcudaFree(d_a);cudaFree(d_b);return 0;
}
  • 执行结果:
    在这里插入图片描述
http://www.lryc.cn/news/370735.html

相关文章:

  • MyBatisPlus代码生成器(交互式)快速指南
  • 深度学习模型训练之日志记录
  • 深入理解Python中的装饰器
  • 基于springboot的人力资源管理系统源码数据库
  • 如何舒适的使用VScode
  • 【微信小程序】开发环境配置
  • 启动盘镜像制作神器(下载即用)
  • PHP框架详解 - Symfony框架
  • 鸿蒙开发:【线程模型】
  • 初级网络工程师之从入门到入狱(三)
  • 【数据结构】排序(直接插入、折半插入、希尔排序、快排、冒泡、选择、堆排序、归并排序、基数排序)
  • MongoDB ObjectId 详解
  • 大数据-11-案例演习-淘宝双11数据分析与预测 (期末问题)
  • Kubernetes集群监控,kube-prometheus安装教程,一键部署
  • 【Gradio】快速入门
  • 深度学习Day-19:DenseNet算法实战与解析
  • 基于openssl实现AES ECB加解密
  • Git:从配置到合并冲突
  • leetcode hot100 之 最长公共子序列
  • 短剧APP开发,新的“财富”
  • Uniapp与第三方应用数据通讯
  • AI大模型战场:通用大模型与垂直大模型的角逐
  • linux的一些知识点分享-------关于操作维护的一些知识点
  • Python使用tkinter库设置背景图片、label显示位置和label设置显示图片
  • OpenStack是什么?
  • 2024下《系统规划与管理师》50个高频考点汇总!背就有效
  • 软件游戏提示msvcp140.dll丢失的原因分析及解决方法
  • 备战 清华大学 上机编程考试-冲刺前50%,倒数第3天
  • docker的安装及docker常用命令
  • Dell服务器根据GPU温度调整风扇转速