当前位置: 首页 > news >正文

【python】OpenCV—Blob Detection(11)

在这里插入图片描述

学习来自OpenCV基础(10)使用OpenCV进行Blob检测

文章目录

  • 1、cv2.SimpleBlobDetector_create 中文文档
  • 2、默认 parameters
  • 3、配置 parameters
  • 附录——cv2.drawKeypoints

1、cv2.SimpleBlobDetector_create 中文文档

cv2.SimpleBlobDetector_create 是 OpenCV 库中用于创建斑点检测器(Blob Detector)的函数。斑点检测是计算机视觉中的一个重要任务,用于检测图像中的小而明亮的区域,通常称为斑点或斑块。下面是 cv2.SimpleBlobDetector_create 函数的中文文档,包括其参数和用法:

一、函数概述
cv2.SimpleBlobDetector_create([params])

  • 功能:创建一个 SimpleBlobDetector 对象,用于在图像中检测斑点。
  • 参数:
    params(可选):一个 SimpleBlobDetector_Params 对象,用于设置斑点检测器的参数。如果未提供,则使用默认参数。

二、参数详解

SimpleBlobDetector_Params 对象包含以下参数,用于调整斑点检测器的行为:

阈值相关参数:

  • minThreshold:用于阈值处理的最小值。
  • maxThreshold:用于阈值处理的最大值。
  • thresholdStep:在 minThreshold 和 maxThreshold 之间递增的步长。

Blob大小参数:

  • filterByArea:是否按斑点面积过滤斑点。
  • minArea:用于过滤的最小斑点面积
  • maxArea:用于过滤的最大斑点面积

Blob形状参数:

  • filterByCircularity:是否按斑点圆度过滤斑点。
  • minCircularity:用于过滤的最小圆度值(范围从0到1,其中1表示完美的圆)。
  • maxCircularity:用于过滤的最大圆度值。

Blob凸性参数:

  • filterByConvexity:是否按斑点凸性过滤斑点。
  • minConvexity:用于过滤的最小凸性值(范围从0到1,其中1表示完全凸的斑点)。

Blob惯性比参数:(它衡量的是一个形状的伸长程度

  • filterByInertia:是否按斑点惯性比过滤斑点。
  • minInertiaRatio:用于过滤的最小惯性比值(范围从0到1)。

其他参数:

  • minRepeatability:斑点检测的最小重复次数(用于去除噪声)。
  • minDistBetweenBlobs:斑点之间的最小距离(用于去除重叠的斑点)。

在这里插入图片描述

2、默认 parameters

import cv2
import numpy as npim = cv2.imread("C://Users/Administrator/Desktop/1.jpg", cv2.IMREAD_GRAYSCALE)ver = (cv2.__version__).split('.')
print(ver)  # ['4', '4', '0']if int(ver[0]) < 3:detector = cv2.SimpleBlobDetector()
else:detector = cv2.SimpleBlobDetector_create()# 检测blobs
keypoints = detector.detect(im)# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)
cv2.destroyAllWindows()

输入图像

请添加图片描述
输出图像

在这里插入图片描述

3、配置 parameters

import cv2
import numpy as npim = cv2.imread("C://Users/Administrator/Desktop/3.jpg", cv2.IMREAD_GRAYSCALE)# 设置SimpleBlobDetector参数
params = cv2.SimpleBlobDetector_Params()# 改变阈值
params.minThreshold = 10
params.maxThreshold = 200# 根据面积过滤
params.filterByArea = True
params.minArea = 1500# 根据Circularity过滤
params.filterByCircularity = True
params.minCircularity = 0.1# 根据Convexity过滤
params.filterByConvexity = True
params.minConvexity = 0.87# 根据Inertia过滤
params.filterByInertia = True
params.minInertiaRatio = 0.01# 创建一个带有参数的检测器
ver = (cv2.__version__).split('.')
if int(ver[0]) < 3:detector = cv2.SimpleBlobDetector(params)
else:detector = cv2.SimpleBlobDetector_create(params)# 检测blobs
keypoints = detector.detect(im)# 用红色圆圈画出检测到的blobs
im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255),cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 结果显示
cv2.imshow("Keypoints", im_with_keypoints)
cv2.waitKey(0)

输入图片
在这里插入图片描述

输出图片

在这里插入图片描述

附录——cv2.drawKeypoints

函数定义

  • cv2.drawKeypoints(image, keypoints, outImage[, color[, flags]])

参数

  • image:原始图片,数据类型应为 8-bit 单通道或三通道图像。

  • keypoints:关键点列表,通常是由特征点检测算法(如 SIFT、SURF、ORB 等)生成。

  • outImage:输出图像,绘制关键点后的图像将保存在这个变量中。可以设置为原始图像,以在原始图像上直接绘制关键点。

  • color:颜色设置,用于绘制关键点的颜色。它是一个包含三个整数值的元组,分别代表蓝色、绿色和红色的强度,取值范围在 0-255 之间。例如,(255, 0, 0) 表示红色。

  • flags:绘图功能的标识设置,用于控制关键点的绘制方式。它是一个可选参数,可以设置为以下值之一或它们的组合(通过按位或运算 |):

    • cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间点。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对。
    • cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形。
    • cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制。
  • 返回值
    该函数没有直接的返回值,但会将绘制了关键点的图像保存在 outImage 参数中。

http://www.lryc.cn/news/369854.html

相关文章:

  • 【C++】 基础复习 | 数据类型,输入,输出流 scanf printf
  • linux pxe和无人值守
  • Questflow借助MongoDB Atlas以AI重新定义未来工作方式
  • 数值计算精度问题(浮点型和双整型累加精度测试)
  • 算法训练营day56
  • 基于STM32的智能水产养殖系统(二)
  • [工具探索]富士mini90拍立得使用指南
  • VMware导入小白分享的MacOS版本之后,无法开机的解决方案
  • 【CSAPP导读】导论
  • “新E代弯道王”MAZDA EZ-6亮相2024重庆国际车展
  • 【lesson11】客户端backUp类的实现
  • 数据结构--关键路径
  • SSTI注入漏洞
  • Day11 - Day15
  • 启航信息学奥林匹克:青少年NOI学习路线与策略指南
  • 易舟云财务软件:数字化时代的财务管家
  • catia零件装配中通过指南针移动零件
  • 如何使用免费的 Instant Data Scraper快速抓取网页数据
  • 【仿真建模-anylogic】事件之手动定时触发
  • ElasticSearch学习笔记之三:Logstash数据分析
  • 求职力扣刷题DAY20--二叉树 part06
  • Error:Kotlin: Module was compiled with an incompatible version of Kotlin.
  • 关于flutter 启动 页面加载空白(三四秒空白页面)
  • 计量校准证书和检定证书区别,企业仪器校准要哪种证书好?
  • 解析Java中1000个常用类:StackWalker类,你学会了吗?
  • 【代码随想录算法训练Day32】LeetCode 122 买卖股票的最佳时机 II、LeetCode 55.跳跃游戏、LeetCode 45.跳跃游戏II
  • Qt之QGraphicsView —— 笔记3:矩形图元连接(附完整源码)
  • 2024年,计算机相关专业还值得选择吗?
  • 流批一体计算引擎-10-[Flink]中的常用算子和DataStream转换
  • Java进阶_多态特性