当前位置: 首页 > news >正文

Python 二分查找:bisect库的使用

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

  • 简介
  • bisect 库的使用
    • bisect_left
    • bisect_right
    • insort_left
    • insort_right
  • 二分查找基础实现


简介

bisect 库是 Python 标准库中的一部分,它提供了二分查找的功能。二分查找是一种在有序列表中查找某一特定元素的搜索算法。它的时间复杂度为 O(log⁡n)O(\log n)O(logn),比顺序查找的时间复杂度 O(n)O(n)O(n) 要有效率。

bisect 库的使用

bisect 库提供了 bisect_leftbisect_rightinsort_leftinsort_right四个函数,用于在有序列表中查找或插入元素。

bisect_left

bisect_left 函数用于在有序列表中二分查找某一位置,使得在该位置插入指定元素后仍保持有序,返回该位置,如果元素已经存在,则返回它的左边位置。

函数原型如下:

bisect.bisect_left(a, x, lo=0, hi=len(a), *, key=None)

其中,a 是一个有序列表,x 是要查找的元素,lohi 是查找范围的左右边界,key 是一个函数,用于从列表中提取比较的键值。

示例:

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 查找元素 4 的位置
print(bisect.bisect_left(a, 4))  # 4
# 查找元素 6 的位置
print(bisect.bisect_left(a, 6))  # 5

bisect_right

bisect_right 函数用于在有序列表中二分查找某一位置,使得在该位置插入指定元素后仍保持有序,返回该位置,如果元素已经存在,则返回它的右边位置。

函数原型如下:

bisect.bisect_right(a, x, lo=0, hi=len(a), *, key=None)

其中,a 是一个有序列表,x 是要查找的元素,lohi 是查找范围的左右边界,key 是一个函数,用于从列表中提取比较的键值。

示例:

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 查找元素 4 的位置
print(bisect.bisect_right(a, 4))  # 4
# 查找元素 6 的位置
print(bisect.bisect_right(a, 6))  # 8

除此之外,bisect_right 还可以简写为 bisect

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 查找元素 4 的位置
print(bisect.bisect(a, 4))  # 4
# 查找元素 6 的位置
print(bisect.bisect(a, 6))  # 8

insort_left

insort_left 函数用于在有序列表中二分查找某一位置,使得在该位置插入指定元素后仍保持有序,然后将元素插入该位置,如果元素已经存在,则插入到它的左边位置。

函数原型如下:

bisect.insort_left(a, x, lo=0, hi=len(a), *, key=None)

其中,a 是一个有序列表,x 是要插入的元素,lohi 是查找范围的左右边界,key 是一个函数,用于从列表中提取比较的键值。

示例:

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 插入元素 4
bisect.insort_left(a, 4)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 8, 10]
# 插入元素 6
bisect.insort_left(a, 6)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 6, 8, 10]

insort_right

insort_right 函数用于在有序列表中二分查找某一位置,使得在该位置插入指定元素后仍保持有序,然后将元素插入该位置,如果元素已经存在,则插入到它的右边位置。

函数原型如下:

bisect.insort_right(a, x, lo=0, hi=len(a), *, key=None)

其中,a 是一个有序列表,x 是要插入的元素,lohi 是查找范围的左右边界,key 是一个函数,用于从列表中提取比较的键值。

示例:

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 插入元素 4
bisect.insort_right(a, 4)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 8, 10]
# 插入元素 6
bisect.insort_right(a, 6)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 6, 8, 10]

除此之外,insort_right 还可以简写为 insort

# 导入 bisect 库
import bisect
# 有序列表
a = [1, 2, 3, 3, 5, 6, 6, 6, 8, 10]
# 插入元素 4
bisect.insort(a, 4)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 8, 10]
# 插入元素 6
bisect.insort(a, 6)
print(a)  # [1, 2, 3, 3, 4, 5, 6, 6, 6, 6, 8, 10]

insort 函数的实质是调用 bisect 函数获取插入位置,然后调用 list.insert 函数将元素插入到该位置。

二分查找基础实现

在 Python 中,我们可以使用 bisect 库来实现二分查找,但其只能根据元素的值和元素之间的比较关系来查找元素的位置,如果要根据元素的其他属性或其他关系来查找元素的位置,就需要自己实现二分查找了。

二分查找的基本模板如下:

def binary_search(nums, target):left, right = 0, len(nums) - 1while left <= right:mid = (left + right) // 2if nums[mid] == target:return midelif nums[mid] < target:left = mid + 1else:right = mid - 1return -1

通过修改模板,我们可以根据更复杂的关系来查找元素。

示例:

852. 山脉数组的峰顶索引
符合下列属性的数组 arr 称为 山脉数组

  • arr.length >= 3
  • 存在 i0 < i < arr.length - 1)使得:
    • arr[0] < arr[1] < ... arr[i-1] < arr[i]
    • arr[i] > arr[i+1] > ... > arr[arr.length - 1]

给你由整数组成的山脉数组 arr ,返回任何满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1] 的下标 i

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/peak-index-in-a-mountain-array

class Solution:def peakIndexInMountainArray(self, arr: List[int]) -> int:n = len(arr)left, right, ans = 1, n - 2, 0while left <= right:mid = (left + right) // 2if arr[mid] > arr[mid + 1]:ans = midright = mid - 1else:left = mid + 1return ans
http://www.lryc.cn/news/36926.html

相关文章:

  • 性能优化之HBase性能调优
  • 图像金字塔,原理、实现及应用
  • 08-Oracle游标管理(定义,打开、获取数据及关闭游标)
  • Python判断字符串是否包含特定子串的7种方法
  • aop实现接口访问频率限制
  • Hive---窗口函数
  • JavaSe第7次笔记
  • 什么是 Service 以及描述下它的生命周期。Service 有哪些启动方法,有 什么区别,怎样停用 Service?
  • Redis部署
  • AT32F437制作Bootloader然后实现Http OTA升级
  • Springboot项目启动初始化数据缓存
  • 深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化
  • 数据、数据资源及数据资产管理的区别
  • 标度不变性(scale invariance)与无标度(scale-free)概念辨析
  • WMS仓库管理系统解决方案,实现仓库管理一体化
  • css常见定位、居中方案_css定位居中
  • 【微信小程序】-- 自定义组件 -- 创建与引用 样式(三十二)
  • ArangoDB——AQL编辑器
  • Lesson 9.1 集成学习的三大关键领域、Bagging 方法的基本思想和 RandomForestRegressor 的实现
  • basic1.0链码部署(基于test-network 环境ubuntu20.04腾讯云)
  • Android---系统启动流程
  • 【网络】http协议
  • Thread::interrupted() 什么意思? 如何中断线程?
  • Oracle OCP 19c 考试(1Z0-083)中关于Oracle不完全恢复的考点(文末附录像)
  • 一起来学习配置Combo接口吧!
  • C++模拟实现红黑树
  • HTTPS协议之SSL/TLS详解(下)
  • OLE对象是什么?为什么要在CAD图形中插入OLE对象?
  • 【微信小程序】-- 自定义组件 -- 数据、方法和属性(三十三)
  • 【Spring 深入学习】AOP的前世今生之代理模式