当前位置: 首页 > news >正文

【数据结构】前缀树(字典树)汇总

基础

{“a”,“abc”,“bac”,“bbc”,“ca” }的字典树如下图:
在这里插入图片描述
最主用的应用:一,字符串编码。二,位运算。

字符串编码

相比利用哈希映射编码,优点如下:
依次查询长度为n的字符串s的前缀时间复杂度是O(n)。查询完s[0…i],再查询s[0…i+1]的时间复杂度是O(1)。而哈希映射的时间复杂度是:O(nn)。
利用哈希映射编码的代码如下:
注意m_iLeafIndex 为-1,表示此节点不是任何字符串的结束字符。

class CStrToIndex
{
public:CStrToIndex() {}CStrToIndex(const vector<string>& wordList) {for (const auto& str : wordList){Add(str);}}int Add(const string& str){if (m_mIndexs.count(str)) { return m_mIndexs[str]; }m_mIndexs[str] = m_strs.size();m_strs.push_back(str);return  m_strs.size()-1;}vector<string> m_strs;int GetIndex(const string& str){if (m_mIndexs.count(str)) { return m_mIndexs[str]; }return -1;}
protected:unordered_map<string, int> m_mIndexs;
};

利用字典树编码的代码如下:

template<class TData = char, int iTypeNum = 26, TData cBegin = 'a'>
class CTrieNode
{
public:~CTrieNode(){for (auto& [tmp, ptr] : m_dataToChilds) {delete ptr;}}CTrieNode* AddChar(TData ele, int& iMaxID){
#ifdef _DEBUGif ((ele < cBegin) || (ele >= cBegin + iTypeNum)){return nullptr;}
#endifconst int index = ele - cBegin;auto ptr = m_dataToChilds[ele - cBegin];if (!ptr){m_dataToChilds[index] = new CTrieNode();
#ifdef _DEBUGm_dataToChilds[index]->m_iID = ++iMaxID;m_childForDebug[ele] = m_dataToChilds[index];
#endif}return m_dataToChilds[index];}CTrieNode* GetChild(TData ele){
#ifdef _DEBUGif ((ele < cBegin) || (ele >= cBegin + iTypeNum)){return nullptr;}
#endifreturn m_dataToChilds[ele - cBegin];}
protected:
#ifdef _DEBUGint m_iID = -1;std::unordered_map<TData, CTrieNode*> m_childForDebug;
#endif
public:int m_iLeafIndex = -1;
protected://CTrieNode* m_dataToChilds[iTypeNum] = { nullptr };//空间换时间 大约216字节//unordered_map<int, CTrieNode*>    m_dataToChilds;//时间换空间 大约56字节map<int, CTrieNode*>    m_dataToChilds;//时间换空间,空间略优于哈希映射,数量小于256时,时间也优。大约48字节
};
template<class TData = char, int iTypeNum = 26, TData cBegin = 'a'>
class CTrie
{
public:int GetLeadCount(){return m_iLeafCount;}CTrieNode<TData, iTypeNum, cBegin>* AddA(CTrieNode<TData, iTypeNum, cBegin>* par,TData curValue){auto curNode =par->AddChar(curValue, m_iMaxID);FreshLeafIndex(curNode);return curNode;}template<class IT>int Add(IT begin, IT end){auto pNode = &m_root;for (; begin != end; ++begin){pNode = pNode->AddChar(*begin, m_iMaxID);}FreshLeafIndex(pNode);return pNode->m_iLeafIndex;}	template<class IT>CTrieNode<TData, iTypeNum, cBegin>* Search(IT begin, IT end){auto ptr = &m_root;for (; begin != end; ++begin){ptr = ptr->GetChild(*begin);if (nullptr == ptr){return nullptr;}}return ptr;}CTrieNode<TData, iTypeNum, cBegin> m_root;
protected:void FreshLeafIndex(CTrieNode<TData, iTypeNum, cBegin>* pNode){if (-1 == pNode->m_iLeafIndex){pNode->m_iLeafIndex = m_iLeafCount++;}}int m_iMaxID = 0;int m_iLeafCount = 0;
};

二进制位运算(01前缀树)

比如求nums和x的xor最大值。
将nums放到01放到前缀树中。通过拆位法依次从高到低处理各位,如果x 此为1,则优先选择前缀树的0分支;如果x为0,则优先选择前缀树的1分支。

class C2BNumTrieNode
{
public:C2BNumTrieNode(){m_childs[0] = m_childs[1] = nullptr;}bool GetNot0Child(bool bFirstRight){auto ptr = m_childs[bFirstRight];if (ptr && (ptr->m_iNum > 0)){return bFirstRight;}return !bFirstRight;}int m_iNum = 0;C2BNumTrieNode* m_childs[2];
};template<class T = int, int iLeveCount = 31>
class C2BNumTrie
{
public:C2BNumTrie(){m_pRoot = new C2BNumTrieNode();}void  Add(T iNum){m_setHas.emplace(iNum);C2BNumTrieNode* p = m_pRoot;for (int i = iLeveCount - 1; i >= 0; i--){p->m_iNum++;bool bRight = iNum & ((T)1 << i);if (nullptr == p->m_childs[bRight]){p->m_childs[bRight] = new C2BNumTrieNode();}p = p->m_childs[bRight];}p->m_iNum++;}void Del(T iNum){auto it = m_setHas.find(iNum);if (m_setHas.end() == it){return;}m_setHas.erase(it);C2BNumTrieNode* p = m_pRoot;for (int i = iLeveCount - 1; i >= 0; i--){p->m_iNum--;bool bRight = iNum & ((T)1 << i);p = p->m_childs[bRight];}p->m_iNum--;}	void Swap(C2BNumTrie<T, iLeveCount>& o) {swap(m_pRoot, o.m_pRoot);swap(m_setHas, o.m_setHas);}C2BNumTrieNode* m_pRoot;std::unordered_multiset<T> m_setHas;
};template<class T = int, int iLeveCount = 31>
class CMaxXor2BTrie : public C2BNumTrie<T, iLeveCount>
{
public:T MaxXor(T iNum){C2BNumTrieNode* p = C2BNumTrie<T, iLeveCount>::m_pRoot;T iRet = 0;for (int i = iLeveCount - 1; i >= 0; i--){bool bRight = !(iNum & ((T)1 << i));bool bSel = p->GetNot0Child(bRight);p = p->m_childs[bSel];if (bSel == bRight){iRet |= ((T)1 << i);}}return iRet;}
};

题解

给字符串编码难道分
字典树】 【哈希表】 【字符串】3076. 数组中的最短非公共子字符串1635
【字典树(前缀树) 字符串】2416. 字符串的前缀分数和需要记录子孙数量1725
【字典树 最长公共前缀】1316. 不同的循环子字符串1836
【字典树(前缀树)】1032. 字符流1970
【map】【滑动窗口】【字典树】C++算法:2781最长合法子字符串的长度2203
【字典树】【字符串】【 前缀】3093. 最长公共后缀查询2118
【字典树】【KMP】【C++算法】3045统计前后缀下标对 II2327
【字典树 离线查询 深度优先】1938. 查询最大基因差2502
动态规划 多源路径 字典树 LeetCode2977:转换字符串的最小成本2695
【动态规划】 【字典树】C++算法:472 连接词
【回溯 字典树(前缀树)】212. 单词搜索 II
【字典树 马拉车算法】336. 回文对
01前缀树
【字典树】2935找出强数对的最大异或值 II2348
【字典树(前缀树) 异或 离线查询】1707. 与数组中元素的最大异或值2358
【字典树(前缀树) 位运算】1803. 统计异或值在范围内的数对有多少2479
其它前缀树
【字典树(前缀树) 哈希映射 后序序列化】1948. 删除系统中的重复文件夹需要DFS2533

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
《喜缺全书算法册》以原理、正确性证明、总结为主。
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

http://www.lryc.cn/news/368404.html

相关文章:

  • Linux:基础开发工具
  • HarmonyOS NEXT Push接入
  • 如何快速入门Element-UI:打造高效美观的前端界面
  • Langchain的向量存储 - Document示例代码里的疑问
  • Docker 教程-介绍-2
  • 【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 伐木工(200分) - 三语言AC题解(Python/Java/Cpp)
  • UltraScale+系列模块化仪器,可以同时用作控制器、算法加速器和高速数字信号处理器
  • Python与其他编程语言(如Java、C++)相比有哪些优势?
  • Edge浏览器双击关闭标签页,双击关闭浏览器选项卡
  • C++ 贪心算法——跳跃游戏、划分字母区间
  • 汽车数据应用构想(三)
  • 体素技术在AI绘画中的革新作用
  • Leetcode.866 回文质数
  • 【论文阅读】Point2RBox (CVPR’2024)
  • 深度学习的点云分割
  • 【知识点】c++模板特化
  • 算法家族之一——二分法
  • 【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment
  • Elastic 8.14:用于简化分析的 Elasticsearch 查询语言 (ES|QL) 正式发布
  • C语言指针与数组的区别
  • springboot3一些听课笔记
  • 【小沐学Python】Python实现Web服务器(CentOS下打包Flask)
  • Cesium开发环境搭建(一)
  • 视频、图片、音频资源抓取(支持视频号),免安装,可批量,双端可用!
  • FreeRTOS实时系统 在任务中增加数组等相关操作 导致单片机起不来或者挂掉
  • CentOS 7基础操作08_Linux查找目录和文件
  • CI/CD实战面试宝典:从构建到高可用性的全面解析
  • NLP实战入门——文本分类任务(TextRNN,TextCNN,TextRNN_Att,TextRCNN,FastText,DPCNN,BERT,ERNIE)
  • MySQL: 表的增删改查(基础)
  • WDF驱动开发-PNP和电源管理(三)