当前位置: 首页 > news >正文

C++协程

什么是协程

协程(Coroutine)是程序组件,可以在执行过程中暂停并在稍后继续执行。与传统的子例程(如函数或过程)不同,子例程一旦调用,必须等其返回后才能继续执行调用它的代码。协程则可以在执行过程中暂停,将控制权交还给调用者,并且可以在稍后从暂停的地方继续执行。

协程的关键特性包括:

  1. 可以在执行过程中暂停和恢复:这使得协程能够在需要的时候让出控制权,然后在适当的时候恢复执行。
  2. 保持状态:协程在暂停时会保存其当前的执行状态(包括局部变量和程序计数器),在恢复时可以从上次暂停的地方继续执行。
  3. 协同调度:协程由程序显式控制切换,通常不依赖于操作系统内核的调度器,减少了上下文切换的开销。

适用场景

协程特别适用于以下场景:

  1. I/O密集型任务:协程可以在等待I/O操作完成时暂停执行,而不阻塞线程,从而提高并发性能。
  2. 异步编程:协程使得异步编程更加直观和简洁,通过异步函数和等待机制,可以避免复杂的回调地狱。
  3. 生成器和迭代器:协程可以用来实现生成器,允许在迭代过程中产生值并在下次调用时继续执行。
  4. 协作式多任务:协程可以用于实现轻量级的任务调度,通过显式的控制切换,实现多任务的协作运行。
  5. 状态机:协程可以通过暂停和恢复的机制,自然地实现复杂的状态机逻辑。

C++中的协程

C++20标准引入了对协程的支持,使得开发者可以使用协程来简化异步编程和并发任务。C++协程的基本概念包括:

  • 协程函数:以co_return结束的函数,可以包含co_await表达式。
  • 协程句柄:表示协程的当前状态,允许暂停和恢复执行。
  • 承诺类型(Promise Type):定义了协程的行为,包括创建、暂停和恢复协程的方法。
示例代码

以下是一个使用C++20协程的简单示例:

#include <iostream>
#include <coroutine>
#include <thread>
#include <chrono>struct Timer {struct promise_type;using handle_type = std::coroutine_handle<promise_type>;struct promise_type {Timer get_return_object() { return {}; }std::suspend_always initial_suspend() { return {}; }std::suspend_always final_suspend() noexcept { return {}; }void return_void() {}void unhandled_exception() { std::terminate(); }};std::chrono::milliseconds duration;Timer(std::chrono::milliseconds duration) : duration(duration) {}bool await_ready() const { return false; }void await_suspend(std::coroutine_handle<> h) const {std::thread([h, duration = this->duration]() {std::this_thread::sleep_for(duration);h.resume();}).detach();}void await_resume() {}
};Timer sleep_for(std::chrono::milliseconds duration) {return Timer(duration);
}struct MyCoroutine {struct promise_type {MyCoroutine get_return_object() { return {}; }std::suspend_never initial_suspend() { return {}; }std::suspend_always final_suspend() noexcept { return {}; }void return_void() {}void unhandled_exception() { std::terminate(); }};
};MyCoroutine my_coroutine() {std::cout << "Hello, ";co_await sleep_for(std::chrono::seconds(1));std::cout << "World!" << std::endl;
}int main() {auto coroutine = my_coroutine();std::this_thread::sleep_for(std::chrono::seconds(2));return 0;
}

解释

  1. promise_type:定义协程的行为,包括初始挂起和最终挂起、返回值和异常处理。
  2. co_await:用于暂停协程的执行。awaiter结构体定义了挂起和恢复协程的逻辑。
  3. resume:用于恢复协程的执行。

适用需求场景

  1. 网络编程:协程非常适合处理大量的并发连接,例如实现高性能的网络服务器。
  2. 实时系统:协程可以用于实现协作式调度,满足实时系统对低延迟和高响应性的需求。
  3. 游戏开发:游戏开发中的许多逻辑可以通过协程简化,例如处理动画、AI决策和物理模拟等。
  4. 文件和数据库I/O:任何需要异步处理文件I/O或数据库操作的场景,都可以通过协程来简化代码和提高性能。
  5. 并行计算:协程可以用于实现并行计算任务,例如数据处理和科学计算,充分利用多核处理器的能力。

通过使用协程,C++开发者可以编写更加简洁、高效的异步代码,同时减少上下文切换带来的开销,提升程序的并发性能。

http://www.lryc.cn/news/367197.html

相关文章:

  • linux系统——ping命令
  • vue3第三十七节(自定义插件之自定义指令)防重指令
  • 面试高频问题----5
  • 计算机网络 —— 网络层(子网掩码和子网划分)
  • 2024 IDEA最新永久使用码教程(2099版)
  • http协议,tomcat的作用
  • 有哪些针对平台端口的常见攻击手段
  • Xcode下载安装
  • 【 k8s 标签与选择器 】
  • 【模拟-BM99 顺时针旋转矩阵】
  • 今年618,京东和爱奇艺为大屏品质“把关”
  • NSS题目练习7
  • 聊一聊大数据需求的流程
  • 老黄一举揭秘三代GPU!打破摩尔定律,打造AI帝国,量产Blackwell解决ChatGPT全球耗电难题
  • HTML静态网页成品作业(HTML+CSS)—— 家乡南宁介绍网页(2个页面)
  • 把qml程序制作成安装包(Windows)
  • 内网中redis无法连接访问问题
  • Unix环境高级编程第二版:深入探索与实战解析
  • SSL/TLS和HTTPS
  • 苹果将推出“Apple Intelligence”AI系统,专注于隐私和广泛应用|TodayAI
  • 配置Kubernetes资源管理Secret与ConfigMap
  • 韩顺平0基础学java——第19天
  • 嵌入式学习——Linux高级编程复习(目录IO、软硬连接、makefile)——day38
  • makefile与进度条
  • 操作系统总结
  • SpringCloud整合OpenFeign实现微服务间的通信
  • 老师必备!一文教你如何高效收集志愿填报信息
  • 创建 MFC DLL-使用DEF文件
  • 如何将HTTP升级成HTTPS?既简单又免费的方法!
  • 数据仓库之核心模型与扩展模型分离