当前位置: 首页 > news >正文

pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute

在深度学习中,张量的维度变换是很重要的操作。在pytorch中,有四个用于维度变换的函数,view, reshape, transpose, permute。其中view, reshape都用于改变张量的形状,transpose, permute都用于重新排列张量的维度,但它们的功能和使用场景有所不同,下面将进行详细介绍,并给出测试验证代码,经过全面的了解,我们才能知道如何正确的使用这四个函数。

这里写目录标题

    • 1. torch.Tensor.view
    • 2. torch.reshape
    • 3. torch.transpose
    • 4. torch.permute
    • 5. torch.transpose与torch.permute的性质与原理

1. torch.Tensor.view

文档:Doc

  • view 方法返回一个新的张量,具有与原始张量相同的数据,但改变了形状。所以view返回的是原始数据的一个新尺寸的视图,这也就是为什么叫做view。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将其调整为3x4的形状
    y = x.view(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 判断新旧张量是否数据是相同的
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([2, 6])
    y shape:  torch.Size([3, 4])
    True
    
  • view 要求原始张量是连续的(即在内存中是按顺序存储的),否则会抛出错误。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上进行view将会报错
    y = x.view(3, 4)
    
    报错输出:
    RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
    
  • 如果张量不是连续的,可以使用 contiguous 方法先将其转换为连续的。

2. torch.reshape

文档:Doc

  • reshape不要求原始张量是连续的
  • 如果原始张量是连续的,那么实现的功能和view一样
  • 如果原始张量不是连续的,那么reshape就是tensor.contigous().view(),也就是会重新开辟一块内存空间,拷贝原始张量,使其连续;
  • 在连续张量上,view 和 reshape 性能相同。在非连续张量上,reshape 可能会稍慢一些,因为它可能需要创建新的连续张量。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上可以进行reshape
    y = x.reshape(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 但reshape返回的是新的内存中的张量
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([6, 2])
    y shape:  torch.Size([3, 4])
    False
    

3. torch.transpose

Doc

  • 功能:仅用于交换两个维度。它接受两个维度参数,分别表示要交换的维度。
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)。
  • 生成的新张量也通常不是连续的。它只是交换两个维度的顺序,不改变数据在内存中的实际存储顺序。
  • 对原始张量是不是连续的没有要求
    import torch
    # 创建一个3x4的张量
    x = torch.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])
    print(x.is_contiguous())
    # 交换第一个和第二个维度
    y = torch.transpose(x, 0, 1)
    print(y.is_contiguous())
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    True
    False
    x shape:  torch.Size([3, 4])
    y shape:  torch.Size([4, 3])
    True
    

4. torch.permute

Doc

  • 可以重新排列任意数量的维度,适用于复杂的维度变换。接受一个shape元组作为参数
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)
  • 生成的新张量通常不是连续的。因为它仅改变维度顺序,不改变数据在内存中的实际顺序。
  • 对原始张量是不是连续的没有要求
    	import torch# 创建一个3x4x5的张量x = torch.randn(3, 4, 5)# 将其第一个和第二个维度交换y = torch.permute(x, (1, 0, 2))print(y.is_contiguous())print(x.data_ptr() == y.data_ptr())print(y.size())  # 输出:torch.Size([4, 3, 5])
    
    输出:
    False
    True
    torch.Size([4, 3, 5])
    

5. torch.transpose与torch.permute的性质与原理

这两者的功能和各方面的性质基本是相同的,只是一个只能交换两个维度,一个能进行更复杂的维度排列。他们的原理是:transpose 和 permute 通过改变张量的 strides(步幅)来重新排列维度。strides 定义了在内存中沿着每个维度移动的步长。它们不改变张量的数据,只是改变了访问数据的方式。因此,这些操作可以应用于任何张量,无论它们是否连续。

http://www.lryc.cn/news/365616.html

相关文章:

  • LeetCode刷题 | Day 4 分割等和子集(Partition Equal Subset Sum)自底向上动态规划
  • 基于工业互联网打造敏捷供应链的实现方式:创新路径与实践应用
  • 碳化硅柱式膜的广泛应用
  • 【QT】QFont字体设置
  • Vue3+vite部署nginx的二级目录,使用hash模式
  • 云南区块链商户平台发票助手成品
  • AI图书推荐:检索增强生成RAG赋能大语言模型
  • 高效学习LabVIEW的方法
  • C语言 | Leetcode C语言题解之第136题只出现一次的数字
  • 如何利用Varjo混合现实技术改变飞机维修训练方式
  • C++:按指定字符分割字符串
  • 网络网络层之(6)ICMPv4协议
  • Opengrok代码在线查看平台
  • 济南适宜地提取
  • Windows 安装虚拟机(VMware+Ubuntu18.04)
  • 图像算法---自动对焦AF
  • sqli-labs 靶场 less-5、6 第五关和第六关:判断注入点、使用错误函数注入爆库名、updatexml()函数
  • WebSocket详解与封装工具类
  • Linux学习, 进程和线程
  • SVM模型实现城镇居民月平均消费数据分类
  • [ZJCTF 2019]NiZhuanSiWei、[HUBUCTF 2022 新生赛]checkin、[SWPUCTF 2021 新生赛]pop
  • c++“二纯” 纯虚函数和纯虚析构
  • MATLAB基础应用精讲-【数模应用】二元Logit分析(最终篇)(附python、MATLAB和R语言代码实现)
  • centos7安装mysql(完整)
  • C++ STL std::vector的实现机制【面试】
  • 激活函数对比
  • pycharm 上一次编辑位置不见了
  • FFmpeg播放器的相关概念【1】
  • =与==的优先级
  • 在Linux上的Java项目导出PDF乱码问题