当前位置: 首页 > news >正文

二叉树讲解

目录

前言

二叉树的遍历

层序遍历

队列的代码

 queuepush和queuepushbujia的区别

判断二叉树是否是完全二叉树

前序

中序

后序

功能展示

创建二叉树

初始化

销毁

简易功能介绍

二叉树节点个数

二叉树叶子节点个数

二叉树第k层节点个数

二叉树查找值为x的节点

判断是否为单值二叉数

判断二叉数高度


前言

本文讲解关于二叉树的创建和各种功能的实现,重点讲解前,中,后和层序遍历的写法

(层序遍历放到了本文前面先讲,如果是刚接触二叉数可以先看功能展示)

前中后序的遍历都用到了递归都写法

而层序遍历却不方便,只能创建队列来解决

二叉树的遍历

层序遍历

层序遍历这里重点讲解一下

因为不能使用递归,只好创建队列来帮助实现

队列的代码

头文件

typedef BTNode* QDataType;typedef struct QueueNode
{struct QueueNode* next;QDataType val;
}QNode;typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);// 队尾插入
void QueuePush(Queue* pq, QDataType x);
void QueuePushbujia(Queue* pq, QDataType x);
// 队头删除
void QueuePop(Queue* pq);// 取队头和队尾的数据
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);int QueueSize(Queue* pq);
bool QueueEmpty(Queue* pq);

源码

void QueueInit(Queue* pq)
{assert(pq);pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}void QueueDestroy(Queue* pq)
{assert(pq);QNode* cur = pq->phead;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->phead = pq->ptail = NULL;pq->size = 0;
}// 队尾插入
void QueuePush(Queue* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");return;}newnode->next = NULL;newnode->val = x;if (pq->ptail == NULL){pq->phead = pq->ptail = newnode;}else{pq->ptail->next = newnode;pq->ptail = newnode;}pq->size++;
}void QueuePushbujia(Queue* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");return;}newnode->next = NULL;newnode->val = x;if (pq->ptail == NULL){pq->phead = pq->ptail = newnode;}else{pq->ptail->next = newnode;pq->ptail = newnode;}
}
// 队头删除
void QueuePop(Queue* pq)
{assert(pq);assert(pq->size != 0);/*QNode* next = pq->phead->next;free(pq->phead);pq->phead = next;if (pq->phead == NULL)pq->ptail = NULL;*/// 一个节点if (pq->phead->next == NULL){free(pq->phead);pq->phead = pq->ptail = NULL;}else // 多个节点{QNode* next = pq->phead->next;free(pq->phead);pq->phead = next;}pq->size--;
}QDataType QueueFront(Queue* pq)
{assert(pq);assert(pq->phead);return pq->phead->val;
}QDataType QueueBack(Queue* pq)
{assert(pq);assert(pq->ptail);return pq->ptail->val;
}int QueueSize(Queue* pq)
{assert(pq);return pq->size;
}bool QueueEmpty(Queue* pq)
{assert(pq);return pq->size == 0;
}
 queuepush和queuepushbujia的区别

两个都是将数据尾插进去,但bujia函数并不会对size加加

这样我们不仅可以正常打印N还不影响真实数据的打印

void BinaryTreeLevelOrder(BTNode* root)
{assert(root);Queue a;QueueInit(&a);BTNode* n = BuyNode1(root->_data);n = root;BTNode* null = BuyNode1('N');printf("%c ", n->_data);while (1){if (n->_left != NULL){QueuePush(&a, n->_left);}else{QueuePushbujia(&a,null);}if (n->_right != NULL){QueuePush(&a, n->_right);}else{QueuePushbujia(&a,null);}if (QueueEmpty(&a)){break;}n = QueueFront(&a);QueuePop(&a);if (n->_data == 'N'){a.size++;}printf("%c ", n->_data);}
}

每拿出一个头数据时就会对size--这样的话如果为N的话很有可能会出现size减完了但实际数据没有打印完的情况

所以这里加入了判断n->_data等于N时应该让size++ 

利用写出来的层序遍历就可以实现

判断二叉树是否是完全二叉树

i和x的作用

如果是完全二叉树遇到一个N后不可能再遇到N意外的数了

否则就是非完全二叉树

利用这一特征

当遇到第一个N时让i++

如果i不等于0说明遇到过N了如果此时遇到了非N的数那么就让n++

如果两个数同时不为0则为非完全二叉树

int BinaryTreeComplete(BTNode* root)
{assert(root);Queue a;QueueInit(&a);BTNode* n = BuyNode1(root->_data);n = root;BTNode* null = BuyNode1('N');//printf("%c ", n->_data);char pan = 'x';int i = 0;int x = 0;while (1){if (n->_left != NULL){QueuePush(&a, n->_left);}else{QueuePushbujia(&a, null);}if (n->_right != NULL){QueuePush(&a, n->_right);}else{QueuePushbujia(&a, null);}if (QueueEmpty(&a)){break;}n = QueueFront(&a);QueuePop(&a);if (n->_data == 'N'){a.size++;}//printf("%c ", n->_data);pan = n->_data;if (pan == 'N'){i++;}if (i !=0){if (pan != 'N'){x++;}}if (i!=0&&x!=0){return 1;}}return 0;
}

前序

void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}printf("%c ", root->_data);BinaryTreePrevOrder(root->_left);BinaryTreePrevOrder(root->_right);
}

中序

void BinaryTreeInOrder(BTNode* root)
{if (root == NULL){printf("N");return;}BinaryTreeInOrder(root->_left);printf("%c ", root->_data);BinaryTreeInOrder(root->_right);
}

后序

void BinaryTreePostOrder(BTNode* root)
{if (root == NULL){printf("N");return;}BinaryTreePostOrder(root->_left);BinaryTreePostOrder(root->_right);printf("%c ", root->_data);
}

功能展示

完成关于二叉树的如下功能

//初始化
BTNode* BuyNode1(BTDataType x);// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
//判断是否为单值二叉数
bool isUnivalTree(struct BTNode* root);
//判断二叉数高度
int maxDepth(struct BTNode* root);

创建二叉树

手动创建一个二叉树可以让后面的功能更方便调试

首先确定结构体内容如下

typedef char BTDataType;typedef struct BinaryTreeNode
{BTDataType _data;struct BinaryTreeNode* _left;struct BinaryTreeNode* _right;
}BTNode;

在进行手动创建一个二叉树

创建之前需要初始化结构体

初始化

//初始化
BTNode* BuyNode1(BTDataType x)
{BTNode* n = (BTNode*)malloc(sizeof(BTNode));if (n == NULL){perror("malloc false");return NULL;}n->_data = x;n->_left = NULL;n->_right = NULL;return n;
}

有了初始化代码就可以正式创建二叉树了 

BTNode* headadd()
{BTNode* a1 = BuyNode1('a');BTNode* a2 = BuyNode1('b');BTNode* a3 = BuyNode1('c');BTNode* a4 = BuyNode1('d');BTNode* a5 = BuyNode1('e');a1->_left = a2;a1->_right = a3;a2->_left = a4;a4->_right = a5;return a1;
}

此时二叉树就建好了

有了初始化就需要有销毁,防止内存泄漏

销毁

使用递归思想比较方便

void BinaryTreeDestory(BTNode** root)
{assert(root);assert(*root);BinaryTreeDestory(&((*root)->_left));BinaryTreeDestory(&((*root)->_right));free(*root);*root == NULL;
}

简易功能介绍

大多数采用递归的方法即可轻松解决

二叉树节点个数

int BinaryTreeSize(BTNode* root)
{if (root == NULL){return 0;}return 1+BinaryTreeSize(root->_left)+BinaryTreeSize(root->_right);

二叉树叶子节点个数
 

int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->_left == NULL && root->_right == NULL){return 1;}return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}

二叉树第k层节点个数
 

int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL||k<1){return 0;}if (root!=NULL&&k == 1){return 1;}return BinaryTreeLevelKSize(root->_left, k - 1) +BinaryTreeLevelKSize(root->_right, k - 1);
}

二叉树查找值为x的节点
 

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->_data == x){return root;}BTNode* lf = BinaryTreeFind(root->_left, x);if (lf != NULL){return lf;}BTNode* lr = BinaryTreeFind(root->_right, x);if (lr != NULL){return lr;}return NULL;
}

判断是否为单值二叉数

bool isUnivalTree(BTNode* root) 
{if (root == NULL){return true;}if (root->_left){if (root->_data!= root->_left->_data){return false;}}if (!isUnivalTree(root->_left)){return false;}if (root->_right){if (root->_data != root->_right->_data){return false;}}if (!isUnivalTree(root->_right)){return false;}return true;
}

判断二叉数高度

int maxDepth(BTNode* root)
{if (root == NULL){return 0;}int leftsize = maxDepth(root->_left);int rightsize = maxDepth(root->_right);return leftsize > rightsize ? leftsize + 1 : rightsize + 1;
}

http://www.lryc.cn/news/363918.html

相关文章:

  • Unity DOTS技术(五)Archetype,Chunk,NativeArray
  • 算法学习笔记(7.1)-贪心算法(分数背包问题)
  • 气膜建筑的施工对周边环境影响大吗?—轻空间
  • 【计算机网络】对应用层HTTP协议的重点知识的总结
  • 30分钟快速入门TCPDump
  • Python | 刷题日记
  • “JS逆向 | Python爬虫 | 动态cookie如何破~”
  • 十.数据链路层——MAC/ARP
  • Linux主机安全可视化运维(免费方案)
  • Vite + Vue 3 前端项目实战
  • python-字符替换
  • 团队项目开发使用git工作流(IDEA)【精细】
  • 爬虫案例实战
  • uniapp uni-popup内容被隐藏问题
  • leetcode155 最小栈
  • 在Ubuntu乌班图上安装Docker
  • 【Redis数据库百万字详解】数据持久化
  • echarts legend. icon的展示
  • PHPstudy情况下上传图片马需要的.htaccess文件
  • 基于最大重叠离散小波变换的PPG信号降噪(MATLAB 2018)
  • Gradio中Button用法及事件监听器click方法使用
  • 【Qt秘籍】[005]-Qt的首次邂逅-创建
  • 亚信安慧AntDB:值得信任的数据产品
  • 超越传统AI 新型多智能体系统MESA,探索效率大幅提升
  • [SWPU 2019]神奇的二维码、buuctf部分web题
  • Python正则表达式匹配中文:深入解析与实战应用
  • 实例Python对比两个word文档并找出不同
  • 2.1 QT随手简记(三)
  • TechM-技术网站
  • SpringBoot: 使用GraalVM编译native应用