当前位置: 首页 > news >正文

神经网络的工程基础(二)——随机梯度下降法|文末送书

相关说明

这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。
本文涉及到的代码链接如下:regression2chatgpt/ch06_optimizer/stochastic_gradient_descent.ipynb

本文将讨论利用PyTorch实现随机梯度下降法的细节。

关于大语言模型的内容,推荐参考这个专栏。

内容大纲

  • 相关说明
  • 一、随机梯度下降法:更优化的算法
  • 二、算法细节
  • 三、代码实现
  • 四、粉丝福利

一、随机梯度下降法:更优化的算法

梯度下降法虽然在理论上很美好,但在实际应用中常常会碰到瓶颈。为了说明这个问题,令 L i L_i Li表示模型在 i i i点的损失,即 L i = ( y i − a x i − b ) 2 L_i = (y_i - ax_i - b)^2 Li=(yiaxib)2,对所有数据点的损失求和后,可以得到整体损失函数: L = 1 ⁄ n ∑ i L i L = 1⁄n ∑_iL_i L=1⁄niLi 。即模型的损失函数实际上是各个数据点损失的平均值,这一观点适用于大多数模型 1

计算整体损失函数 L L L的梯度可得, ∇ L = 1 ⁄ n ∑ i L i ∇L = 1⁄n \sum_i L_i L=1⁄niLi。也就是说,损失函数的梯度等于所有数据点处梯度的平均值。但是在实际应用中,通常会使用大型数据集计算所有数据点的梯度和,这需要相当长的时间。为了加速这个计算过程,可以考虑使用随机梯度下降法(Stochastic Gradient Descent,SGD)。

二、算法细节

随机梯度下降法的核心思想是:每次迭代时只随机选择小批量的数据点来计算梯度,然后用这个小批量数据点的梯度平均值来代替整体损失函数的梯度2

为了使算法的细节更加准确,引入一个超参数,称为批量大小(Batch Size),记作m。每次随机选取m个数据,记为 I 1 , I 2 , ⋯ , I m I_1,I_2,⋯,I_m I1,I2,,Im。使用这些数据点的梯度平均值来近似代替整体损失函数的梯度: ∇ L = 1 ⁄ n ∑ i ∇ L i ≈ 1 ⁄ m ∑ j = 1 m ∇ L I j ∇L = 1⁄n ∑_i∇L_i ≈ 1⁄m ∑_{j = 1}^m∇L_{I_j } L=1⁄niLi1⁄mj=1mLIj 。由此得到新的参数迭代公式:
a k + 1 = a k − η / m ∑ j = 1 m ∂ L I j / ∂ a b k + 1 = b k − η / m ∑ j = 1 m ∂ L I j / ∂ b (1) a_{k + 1} = a_k - η/m ∑_{j = 1}^m∂L_{I_j }/∂a \\ b_{k + 1} = b_k -η/m ∑_{j = 1}^m∂L_{I_j }/∂b \tag{1} ak+1=akη/mj=1mLIj/abk+1=bkη/mj=1mLIj/b(1)

在随机梯度下降法中,所有数据点都使用了一遍,称为模型训练了一轮。由此在实际应用中常使用另一个超参数——训练轮次(Epoch),表示所有数据将被用几遍,用于控制随机梯度下降法的循环次数。换句话说,就是公式(1)被迭代运算多少次。

在一些机器学习书籍和学术文献中,还对随机梯度下降法(当m=1时)和小批量梯度下降法(当m>1时)进行了进一步的区分。然而,这两种方法之间的区别并不大,其核心思想都是基于随机采样来近似计算梯度,从而高效地更新参数、优化模型。在实际应用中,会根据问题的性质和数据规模选择合适的批次大小,以获得最佳的训练效果。因此,本书将统一使用随机梯度下降法来代表这一类方法,以保持概念清晰和简洁。

与梯度下降法相比,随机梯度下降法更高效,这是因为小批量梯度计算比整体梯度计算快得多。尽管在随机梯度下降法中,采用小批量数据估计梯度可能会引入一些噪声,但实践证明这些噪声对整个优化过程有好处,有助于模型克服局部最优的“陷阱”,逐步逼近全局最优参数。

三、代码实现

随机梯度下降法的实现与梯度下降法类似,不同之处在于,每次计算梯度时需要“随机”选取一部分数据,具体的实现步骤可以参考程序清单1(完整代码)。

  1. 在程序清单1的第2行,引入一个名为batch_size的超参数,用于控制每个批次中的数据量大小。选择合适的batch_size对算法的运行效率和稳定性至关重要。如果参数设置过大,可能会导致算法运行效率下降;而过小的参数可能使算法变得过于随机,影响收敛的稳定性。选择合适的参数需要结合具体的模型和应用场景,结合相关领域的经验进行决策。
  2. 在程序清单1的第11—13行,展示了一种随机选取批次数据的实现方式。这也是随机梯度下降法与普通梯度下降法的主要区别之一。实现随机性的方式有很多种,比如引入随机数等。这里仅呈现一种经典方法:将数据按顺序划分成批次。
程序清单1 随机梯度下降法
 1 |  # 定义每批次用到的数据量2 |  batch_size = 203 |  # 定义模型4 |  model = Linear()5 |  # 确定最优化算法6 |  learning_rate = 0.17 |  optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)8 |  9 |  for t in range(20):
10 |      # 选取当前批次的数据,用于训练模型
11 |      ix = (t * batch_size) % len(x)
12 |      xx = x[ix: ix + batch_size]
13 |      yy = y[ix: ix + batch_size]
14 |      yy_pred = model(xx)
15 |      # 计算当前批次数据的损失
16 |      loss = (yy - yy_pred).pow(2).mean()
17 |      # 将上一次的梯度清零
18 |      optimizer.zero_grad()
19 |      # 计算损失函数的梯度
20 |      loss.backward()
21 |      # 迭代更新模型参数的估计值
22 |      optimizer.step()
23 |      # 注意!loss记录的是模型在当前批次数据上的损失,该数值的波动较大
24 |      print(f'Step {t + 1}, Loss: {loss: .2f}; Result: {model.string()}')

在随机梯度下降法的执行过程中,通常使用模型的整体损失作为指标来监测算法的运行情况。但要注意的是,程序清单1中第16行定义的loss表示模型在小批量数据上的损失,这个值仅依赖于少量数据,迭代过程中会表现出极大的不稳定性,因此并不适合作为评估算法运行情况的主要标志。

如果希望更准确地监测算法的运行情况,需要在更大的数据集上估计模型的整体损失,例如在全部训练数据上计算损失,如图1所示。这种评估方式更稳定,能够更全面地反映模型的训练进展。

图1

图1

四、粉丝福利

参与方式:关注博主、点赞、收藏、评论区评论“解构大语言模型”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
本次送书数量不少于3本,【阅读量越多,送得越多】
活动结束后,会私信中奖粉丝,请各位注意查看私信哦~

活动截止时间:2024-05-24 24:00:00


  1. 对于解决回归问题的模型,这个结论显然成立。对于解决分类问题的模型(比如逻辑回归模型),只需对模型的似然函数做简单的数学变换(先求对数,再求相反数),就可以得到同样的结论。 ↩︎

  2. 这在数学上是完全合理的。从统计的角度来看,用所有数据点求平均值,并不比随机抽样的方法高明很多。与线性回归参数估计值类似,两个结果都是随机变量:它们都以真实梯度为期望,只是前者的置信区间更小。 ↩︎

http://www.lryc.cn/news/359839.html

相关文章:

  • 常见的几种编码方式
  • ubuntu移动硬盘重命名
  • VUE框架前置知识总结
  • 张宇1000题80%不会?别急,这个方法肯定有用!
  • 【python】爬虫记录每小时金价
  • 一行命令将已克隆的本地Git仓库推送到内网服务器
  • Linux文本处理三剑客(详解)
  • AI在线UI代码生成,不需要敲一行代码,聊聊天,上传图片,就能生成前端页面的开发神器
  • go-zero整合单机版ClickHouse并实现增删改查
  • 行政工作如何提高效率?桌面备忘录便签软件哪个好
  • 利用向日葵和微信/腾讯会议实现LabVIEW远程开发
  • SpringBoot 单元测试 指定 环境
  • Flutter 中的 SliverOpacity 小部件:全面指南
  • 源码分析の前言
  • 接口性能测试复盘:解决JMeter超时问题的实践
  • [数据集][目标检测]猕猴桃检测数据集VOC+YOLO格式1838张1类别
  • 摸鱼大数据——Hive函数7-9
  • python连接数据库
  • 能不能接受这些坑?买电车前一定要看
  • k8s中pod如何排错?
  • 【手撕面试题】Vue(高频知识点二)
  • 四、.Net8对接Ollama实现文字翻译(.Net8+SemanticKernel+Ollama)本地运行自己的大模型
  • 初始C++
  • Chapter 5 Current Mirrors and Biasing Techniques
  • Avalonia Image控件上通过鼠标拖动画出矩形框
  • Wireshark Lua插件入门
  • XXE漏洞简介
  • 小白跟做江科大32单片机之蜂鸣器
  • IsoBench:多模态基础模型性能的基准测试与优化
  • MyEclipse使用教程