当前位置: 首页 > news >正文

数据结构基础篇(4)

十六.循环链表

  • 概念
    • 循环链表是一种头尾相接的链表(最后一个结点的指针域指向头结点,整个链表形成一个环)
  • 优点
    • 从表任一结点出发均可找到表中其他结点
  • 判断终止
    • 由于循环链表中没有NULL指针,所以涉及遍历操作时,终止条件不像非循环链表那样判断p或p->next是否为空,而是是否等于头指针
    • 循环条件从p!=NULL到p!=L,p->next!=NULL到p->next!=L(单循环链表)
  • 时间复杂度
    • 头指针表示单循环链表
      • 找a~1的时间复杂度:O(1)
      • 找a~n的时间复杂度:O(n)
        • 注意
          • 表的操作常常在表的首尾位置上进行
    • 尾指针表示单循环链表
      • a~1的存储位置是:R->next->next
      • a~n的存储位置是:R
      • 时间复杂度均为O(1)
  • LinkList Connect(LinkList Ta,LinkList Tb)    //假设Ta.Tb都是非空的单循环链表
    {vp=Ta->next;    //p存表头结点Ta->next=Tb->next->next;    //Tb表头连接Ta表尾delete Tb->next;    //释放Tb表头结点Tb->next=p;    //修改指针return Tb;
    }  

十七.双向链表

  • 双向链表的由来
    • 查找某结点的后续结点的执行时间=O(1)
      • 单链表结点->有指示后继的指针域->后继结点
    • 查找某结点的前驱结点的执行时间=O(n)
      • - ->无指示前驱的指针域->依次寻找前驱结点
  • 双向链表的概念
    • 在单链表的每个结点里再增加一个指向其直接前驱的指针域prior,这样链表就形成了有两个方向不同的链。
  • 双向链表的特点
    • 双向链表也有循环表
      • 让头结点的前驱指针指向链表的最后一个节点
      • 让最后一个节点的后继指针指向头结点
  • 双向链表结构的对称性
    • p->prior->next=p=p->next->prior
  • 在双向链表中有些操作(如:ListLength、GetElem等),因仅涉及一个方向的指针,所以它们的算法与线性链表的相同。
  • 在插入、删除时,则需同事修改两个方向上的指针,两个的操作的时间复杂度都为O(n)。

双向链表的插入

void ListInsert_DuL(DuLinkList &L,Init i,ElemType e)    //在带头结点的双向循环链表L中第i个位置之前插入元素e
{if(!(p=GetElemP_DuL(L,i)))return ERROR;s=new DuLNOde;s->date=e;s->prior=p->prior;p->prior->next=s;s->next=p;p->prior=s;return OK;
}//ListInsert_Dul

双向链表的删除

void ListDelete_DuL(DuLinkList &L,Init i,ElemType &e)    //删除带头节点的双向循环链表L的第i个元素,并返回e
{if(!(p=GetElemP_DuL(L,i)))return ERROR;e=p->data;p->prior->next=p->next;p->next->prio=p->prior;free(p)return OK;
}//ListDelete_Dul

十八.单链表,循环链表和双向链表的时间效率比较

时间效率的比较

查找表头结点(首元结点)

查找表尾结点

查找结点*P的前驱结点

带头结点的单链表L

L->next

时间复杂度O(1)

从L->next依次向后遍历时间复杂度O(n)

通过p->next无法找到其前驱

带头结点仅设头指针L的循环单链表

L->next

时间复杂度O(1)

从L->next依次向后遍历时间复杂度O(n)

通过p->next可以找到其前驱 时间复杂度O(n)

带头结点仅设尾指针R的循环单链表

R->next|

时间复杂度O(1)

R 时间复杂度O(1)

通过p->next可以找到其前驱 时间复杂度O(n)

带头结点的双向循环链表L

L->next

时间复杂度O(1)

L->prior

时间复杂度O(1)

p->prior 时间复杂度O(1)

十九.顺序表和链表的比较

  • 链式存储结构的优点
    • 节点空间可以动态申请和释放
    • 数据元素的逻辑次序靠节点的指针来指示,插入和删除时不需要移动数据元素
  • 链式存储结构的缺点
    • 存储密度小,每个结点的指针域需额外占用存储空间。当每个节点的数据域所占字节不多时,指针域所占存储空间的比重闲得很大。
      • 存储密度
        • 概念
          • 结点数据本身所占的存储量和整个节点结构所占的存储量之比
        • 公式
          • 存储密度=结点数据本身占用的空间/结点占用的空间总量
        • 比较
          • 顺序表存储密度1,链式小于1。
    • 链式存储结构是非随机存储结构。对任一结点的操作都要从头指针依指针链查找到该结点,增加了算法的复杂度。
  • 顺序表和链表比较图

比较项目\存储结构

顺序表

链表

空间-存储空间

预先分配,导致空间闲置或溢出现象

动态分配,不会出现存储空间闲置或溢出现象

空间-存储密度

不用为表示结点间的逻辑关系而增加额外的存储开销,存储密度等于1

需要借助指针来体现元素间的逻辑关系,存储密度小于1.

时间-存取元素

随机存储,按位置访问元素的时间复杂度O(1)

顺序存储,按位置访问元素时间复杂度O(n)

时间-插入、删除

平均移动约表中一半元素,时间复杂度O(n)

不需要移动元素,确定插入,删除位置后,时间复杂度O

适用情况

  • 表长变化不大,能事先确定变化的范围。
  • 很少进行插入或删除操作,经常按元素位置序号访问数据元素。
  • 长度变化较大
  • 频繁进行插入或删除操作

二十.线性表的应用

  • 线性表的合并
    • 问题
      • 假设利用两个线性表La和Lb分别表示两个集合A和B,现要求一个新的集合A=AUB
    • 解决
void union(List &La,List Lb)
{La_len=ListLength(La);Lb_len=ListLength(Lb);for(i=1;i<=Lb_len;i++){GetElem(Lb,i,e);if(!LocateElem(La,e))ListInsert(&La,++La_len,e);    }
}    //算法的时间复杂度是:O(ListLength(La)*ListLength(Lb))
  • 有序表的合并
    • 问题
      • 已知线性表La和Lb中的数据元素按值非递减有序排列,现要求LA和Lb归并为一个新的线性表Lc,Lc中的数据元素扔按值非递减有序排列。
    • 解决
      • 创建一个空表Lc
      • 依次从La或Lb中“摘取”元素值较小的节点插入到Lc表的最后,直到其中一个表边空为止
      • 继续将La或Lb其中一个表的剩余节点插入在Lc表的最后

用顺序表来实现

void MergeList_Sq(SqList LA,SqList Lb,SqList &LC)
{pa=LA.elem;pb=LB.elem;    //指针pa和pb的初值分别指向两个表的第一个元素LC.length=LA.length+LB.length;    //新表长度为待合并量表的长度之和LC.elem=new ElemType[LC.length];    //为合并后的新表分配一个数组空间pc=LC.elem;    //指针pc指向新表的第一个元素pa_last=LA.elem+LA.length-1;    //指针pa_last指向LA表的最后一个元素pb_last=LB.elem+LB.length-1;     //指针pa_last指向LB表的最后一个元素while(pa<=pa_last && pb<=pb_last)    //两个表都非空{if(*pa<=*pb)*pc++=*pa++;    //依次“摘取”两表中的最小值else *pc++=*pb++;                                                          }while(pa<=pa_last)*pc++=*pa++;     //LB表已到达表尾,将LA中剩余元素加入LCwhile(pb<=pb_last)*pc=++=*pb++;    //LA表已到达表尾,将LB中剩余元素加入LC
}    //MergeList_Sq//算法的时间复杂度是:O(ListLength(La)*ListLength(Lb))

用链表来实现

void MergeList_L(SqList &La,SqList &Lb,SqList &Lc)
{pa=La->next;pb=Lb->next;pc=Lc=La;    //用La的头结点作为Lc的头结点while(pa&&pb){if(pa->data<=pb->data){pc->next=pa;pc=pa;pa=pa->next;        }               else{pc->next=pb;pc=pb;pb=pb->next;        }     }pc->next=pa?pa:pb;  //插入剩余段delete Lb;    //释放Lb的头结点
}    //算法的时间复杂度是:O(ListLength(La)*ListLength(Lb))
  • 一元多项式的运算
    • 多项式创建
    • 创建一个只有头结点的空链表
    • 根据多项式的项的个数n,循环n次执行以下操作
      • 生成一个新结点*s
      • 输入多项式当前项的系数和指数赋给新节点*s的数据域
      • 设置一前驱指针pre,用于指向待找到的第一个大于输入项指数的结点的前驱,pre初值指向头结点。
      • 指针q初始化,指向首元结点
      • 循链向下逐个比较链表中当前结点与输入项指数,找到第一个大与输入项指数的节点*q
      • 将输入项结点*s插入到结点*q之前
void CreatePolyn(Polynomial &P,int n)    //输入m项的系数和指数,建立表示多项式的有序链表P
{P=new PNode;p->next=NULL;    //先建立一个带头结点的单链表for(i=1;i<=n;i++)    //依次输入n个非零项{s=new PNode;    //生成新节点cin>>s->coef>>s->expn;    //输入系数和指数pre=P;    //pre用于保存q的前驱,初值为头结点q=P->next;    //q初始化,指向首元结点while(q&&q->expn<s->expn)    //找到第一个大于输入项指数的项*q{pre=q;q=q->next;        }    s->next=q;    //将输入项s插入到q和其前驱结点pre之间pre->next=s;}
}
http://www.lryc.cn/news/359003.html

相关文章:

  • 使用cad绘制一个螺旋输送机
  • 迭代器模式(行为型)
  • Django——Admin站点(Python)
  • React 组件通信
  • 【再探】设计模式—访问者模式、策略模式及状态模式
  • 新人硬件工程师,工作中遇到的问题list
  • 如何在Linux系统中搭建Zookeeper集群
  • C++:vector的模拟实现
  • QT系列教程(5) 模态对话框消息传递
  • Linux学习笔记(清晰且清爽)
  • 2.5Bump Mapping 凹凸映射
  • 数字化前沿:Web3如何引领未来技术演进
  • 【kubernetes】探索k8s集群的存储卷、pvc和pv
  • UI线程和工作线程
  • RandLA-Net 训练自定义数据集
  • 洛谷 B3642:二叉树的遍历 ← 结构体方法 链式前向星方法
  • 飞腾+FPGA多U多串全国产工控主机
  • uni-app实现页面通信EventChannel
  • 等保系列之——网络安全等级保护测评工作流程及工作内容
  • 自然语言处理中的BERT模型深度剖析
  • 数据结构:希尔排序
  • unicloud 云对象
  • 【车载开发系列】常用专业术语汇总
  • 如何实现Docker容器的自动化升级:不再为手动更新烦恼!
  • SwiftUI 5.0(iOS 17)进一步定制 TipKit 外观让撸码如虎添翼
  • 使用C#实现VS窗体应用——画图板
  • flutter 自定义本地化-GlobalMaterialLocalizations(重写本地化日期转换)
  • HTTPS 原理技术
  • Linux基础指令及其作用之压缩与解压
  • ORA-08189: 因为未启用行移动功能, 不能闪回表问题