当前位置: 首页 > news >正文

动手学深度学习(Pytorch版)代码实践 -深度学习基础-02线性回归基础版

02线性回归基础版

主要内容

  1. 数据生成:使用线性模型 ( y = X*w + b ) 加上噪声生成人造数据集。
  2. 数据读取:通过小批量读取数据集来实现批量梯度下降,打乱数据顺序并逐批返回特征和标签。
  3. 模型参数初始化:随机初始化权重和偏置,并设置为可计算梯度。
  4. 模型定义:实现线性回归模型 ( y = X*w + b )。
  5. 损失函数:实现均方误差损失函数。
  6. 优化函数:实现小批量随机梯度下降用于更新模型参数。
  7. 模型训练:设定学习率和迭代次数,通过每个批量计算损失、反向传播和参数更新。
import random
import torch# 生成数据集
def synthetic_data(w, b, num_examples):"""生成 y = Xw + b + 噪声"""# torch.normal: 返回一个从均值为0,标准差为1的正态分布中提取的随机数的张量# 生成形状为(num_examples, len(w))的矩阵X = torch.normal(0, 1, (num_examples, len(w)))# torch.matmul: 矩阵乘法y = torch.matmul(X, w) + b# 添加噪声:torch.normal(0, 0.01, y.shape)y += torch.normal(0, 0.01, y.shape)# reshape: 只改变张量的视图,不改变数据,将y转换为列向量return X, y.reshape((-1, 1))# 定义真实的权重和偏置
true_w = torch.tensor([2, -3.4])
true_b = 4.2
# 生成特征和标签
features, labels = synthetic_data(true_w, true_b, 1000)# 读取数据集
def data_iter(batch_size, features, labels):num_examples = len(features)# 生成一个从0到num_examples-1的整数列表indices = list(range(num_examples))# 将列表的次序打乱random.shuffle(indices)# 每次迭代生成一个小批量数据for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i:min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]# 设置批量大小
batch_size = 10# 初始化模型参数 
# 随机初始化权重,设置requires_grad=True以计算梯度
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True) # 初始化偏置为0,设置requires_grad=True以计算梯度
b = torch.zeros(1, requires_grad=True)  # 定义模型
def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b# 定义损失函数
def squared_loss(y_hat, y):"""均方损失函数"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2# 定义优化函数
def sgd(params, lr, batch_size):"""小批量随机梯度下降"""# 更新参数时不需要计算梯度with torch.no_grad():for param in params:param -= lr * param.grad / batch_size  # 参数更新param.grad.zero_()  # 梯度清零# 模型训练
lr = 0.03  # 学习率
num_epochs = 5  # 迭代周期数
net = linreg  # 线性回归模型
loss = squared_loss  # 损失函数# 开始训练
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # 计算小批量数据的损失l.sum().backward()  # 计算梯度sgd([w, b], lr, batch_size)  # 更新参数with torch.no_grad():train_l = loss(net(features, w, b), labels)  # 计算整个数据集上的损失print(f'第{epoch + 1}轮,损失: {float(train_l.mean()):f}')# 打印权重和偏置的估计误差
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')# 示例输出:
# 第1轮,损失: 0.036624
# 第2轮,损失: 0.000131
# 第3轮,损失: 0.000052
# 第4轮,损失: 0.000052
# 第5轮,损失: 0.000052
# w的估计误差: tensor([-0.0003, -0.0008], grad_fn=<SubBackward0>)
# b的估计误差: tensor([0.0007], grad_fn=<RsubBackward1>)
http://www.lryc.cn/news/357868.html

相关文章:

  • 信息学奥赛初赛天天练-15-阅读程序-深入解析二进制原码、反码、补码,位运算技巧,以及lowbit的神奇应用
  • 期权具体怎么交易详细的操作流程?
  • 系统架构设计师【第3章】: 信息系统基础知识 (核心总结)
  • Linux 驱动设备匹配过程
  • 游戏子弹类python设计与实现详解
  • Python基础学习笔记(六)——列表
  • 帝国CMS跳过选择会员类型直接注册方法
  • 【python】python tkinter 计算器GUI版本(模仿windows计算器 源码)【独一无二】
  • 黑马es数据同步mq解决方案
  • 通过LLM多轮对话生成单元测试用例
  • [Redis]String类型
  • Ai速递5.29
  • Android9.0 MTK平台如何增加一个系统应用
  • LabVIEW中实现Trio控制器的以太网通讯
  • C/C++运行时库与 UCRT 通用运行时库:全面总结与问题实例剖析
  • 【Python001】python批量下载、插入与读取Oracle中图片数据(已更新)
  • 流形学习(Manifold Learning)
  • 区块链技术和应用
  • Docker拉取镜像报错:x509: certificate has expired or is not yet v..
  • 猫狗分类识别模型建立②模型建立
  • React Native 之 ToastAndroid(提示语)(二十一)
  • 合约之间调用-如何实现函数静态调用?
  • 【5.基础知识和程序编译及调试】
  • 微信小程序(路由传参)
  • 电脑显示不出网络
  • random模块一
  • Spring OAuth2:开发者的安全盾牌!(下)
  • kotlin基础之协程
  • 法那科机器人M-900iA维修主要思路
  • 01_Spring Ioc(详解) + 思维导图