当前位置: 首页 > news >正文

vector你得知道的知识

vector的基本使用和模拟实现

在这里插入图片描述

一、std::vector基本介绍

1.1 常用接口说明

在这里插入图片描述

std::vector是STL中的一个动态数组容器,它可以自动调整大小,支持在数组末尾快速添加和删除元素,还支持随机访问元素

以下是std::vector常用的接口及其说明:

  1. push_back(): 在容器末尾添加元素
std::vector<int> vec{1, 2, 3};
vec.push_back(4);
  1. pop_back(): 删除容器末尾的元素
std::vector<int> vec{1, 2, 3};
vec.pop_back();
  1. size(): 返回容器中元素的个数
std::vector<int> vec{1, 2, 3};
std::cout << vec.size() << std::endl; //输出3
  1. empty(): 判断容器是否为空

  2. reserve(): 分配容器的内部存储空间,但不改变元素个数

std::vector<int> vec{1, 2, 3};
vec.reserve(10);	// 分配10个int大小的空间

其中的reserve接口,你说是分配容器空间,这是在堆上还是栈上开辟空间?那如果重新分配的空间比现有空间小,会发生什么?以及重新分配的空间大于现有空间,是在现有的基础上直接扩容,还是舍弃现有空间,将现有数据拷贝到新的空间上?

新分配的内存空间位于堆上。如果重新分配的空间比现有空间小,std::vector 会舍弃多余的元素。如果新分配的空间比现有空间大,std::vector 会重新分配内存,并将原有数据复制到新的内存空间中。

需要注意的是,重新分配内存并将原有数据复制到新的内存空间中,可能会导致性能问题。因此,如果您能够预估存储的数据量,建议在创建 std::vector 时就预分配足够的内存空间,以避免频繁地重新分配内存。

  1. resize(): 改变容器的元素个数
std::vector<int> vec{1, 2, 3};
vec.resize(5);
  1. clear(): 删除容器中的所有元素

  2. at(): 返回指定位置的元素

std::vector<int> vec{1, 2, 3};
std::cout << vec.at(1) << std::endl; //输出2
  1. front(): 返回容器中第一个元素

  2. back(): 返回容器中最后一个元素

  3. begin(): 返回指向容器中第一个元素的迭代器,end(): 返回指向容器中最后一个元素之后位置的迭代器

std::vector<int> vec{1, 2, 3};
for (auto it = vec.begin(); it != vec.end(); ++it) {std::cout << *it << " ";
}
  1. reverse():反转vector

std::vector::reverse 不是重新分配容器空间的接口,它是用于反转容器中元素的顺序。也就是将容器中第一个元素和最后一个元素交换,第二个元素和倒数第二个元素交换,以此类推。

1.2 代码示例

在这里插入图片描述

1.2.1 遍历vector的几种方式

以下示例中分别提到了:下标+[], 迭代器, 范围for, 反向迭代器

void test_vector1()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (size_t i = 0; i < v.size(); i++)		//1、下标+[]{cout << v[i] << " ";}vector<int>::iterator it = v.begin();		//2、迭代器while (it != v.end()){cout << *it << " ";it++;}for (auto e : v)			//3、范围for{cout << e << " ";}vector<int>::reverse_iterator rit = v.rbegin();	// 4、反向迭代器while (rit != v.rend()){cout << *rit << " ";rit++;}// 5 4 3 2 1
}

不难发现,用范围for访问的元素可以直接输出,而通过for循环,从v.begin()开始的迭代器it,却需要解引用。这是因为,在范围for循环中,迭代器是被自动解引用的。

在范围for循环中,循环变量的类型是根据容器元素的类型自动推导出来的,而不是容器的迭代器类型。对于std::vector<int>容器,其元素类型是int,因此在范围for循环中,循环变量的类型是int,而不是std::vector<int>::iterator

1.2.2 使用迭代器区间构造对象

vector<int> v2(++v.begin(), --v.end());		//利用迭代器区间构造对象————区间左闭右开 
// 2 3 4
string s("hello world");
vector<char> v3(s.begin(), s.end());		//其它容器的迭代器只要类型匹配同样适用vector<int> v4;
v4.assign(s.begin(), s.end());				//assign接口类似————中文意思为分配

以上示例中,提到了利用迭代器区间构建对象这种方式是左闭右开的,例如:(v.begin() + 1, v.begin() + 4),这代表下标为[2, 5)的元素。

只要迭代器的类型与vector所存储的元素类型相同,就可以使用迭代器区间构建新的vector对象。例如上面提到的char类型的vector和char类型的string是可以匹配的。

在这里插入图片描述

1.2.3 vector的初始化

void test_vector2()
{vector<int> v;v.reserve(10);//开空间改变容量,但不初始化//错误访问——————下标引用操作符会检查插入位置是否合法,即小于_size//for (size_t i = 0; i < 10; i++)//{//	v[i] = i;//}//正确访问for (size_t i = 0; i < 10; i++){v.push_back(i);}v.resize(20);//开空间+初始化
}

上述示例中,提到了我在OJ题中经常弄糊涂的内容,使用reserve进行初始化是最好的,因为不会像resize那样,擅自向vector中填入值,但使用后记得不要使用下标引用操作符去访问,而是使用push_back

1.2.4 insert\查找\排序

void test_vector3()
{int a[] = { 1,2,3,4,5 };vector<int> v(a, a + 5);//头插v.insert(v.begin(), 0);			//第一个参数传入的是迭代器//在2前面插入vector<int>::iterator pos = find(v.begin(), v.end(), 2);		//find函数位于算法库中algorithmif (pos != v.end())		//查找失败会返回end位置的迭代器{v.insert(pos, 20);}// 0 1 20 2 3 4 5  //sort排序sort(v.begin(), v.end());	// 0 1 2 3 4 5 20 sort(v.begin(), v.end(), greater<int>());		//greater<int>是一个仿函数类,需要调用库函数是functional// 20 5 4 3 2 1 0
}

上述例子注释写得很清楚,印象最深的是二叉树后序遍历可以巧用头插获取返回结果。下面主要讲解sort的第三个参数:

sort函数的第三个参数是可选的比较函数,用于指定排序时的元素比较规则。当不指定比较函数时,默认使用小于号进行比较,即升序。

sort(v.begin(), v.end(), greater<int>())中,greater<int>()是一个函数对象,用于指定降序排序的比较规则。greater<int>()是一个模板类,它重载了函数调用运算符operator(),实现了比较规则。对于两个元素x和y,如果greater<int>()(x, y)返回true,则x会被排在y之前。

因此,sort(v.begin(), v.end(), greater<int>())实现了对容器v进行降序排序的操作,greater<int>()是用于指定比较规则的函数对象,它实现了元素的比较运算。

下面是一个简单的实现:

template<typename T>
struct greater
{bool operator()(const T& x, const T& y) const{return x > y;}
};

这个定义了一个模板类greater,它有一个函数调用运算符operator()operator()接受两个参数xy,表示要比较的两个元素,它的返回值是一个bool类型,表示x是否应该排在y之前。在这个实现中,operator()的比较规则是x大于y,即从大到小排序。

1.2.5 erase删除

void test_vector4()
{int a[] = { 1,2,3,4,5 };vector<int> v(a, a + 5);//头删v.erase(v.begin());		//参数传入下标位置的迭代器,或迭代器区间//删除2vector<int>::iterator pos = find(v.begin(), v.end(), 2);if (pos != v.end()){v.erase(pos);}
}

上述例子中主要写了erase的使用方式,参数是一个vector的迭代器。

二、vector模拟实现

在这里插入图片描述

这个 vector 类中包含了:构造函数、拷贝构造、使用迭代器区间初始化的构造函数、析构。

实现了普通迭代器和只读迭代器,及其对应的begin()end()函数。

这个类中的成员变量为私有类型的普通迭代器类型的。记录了vector开始位置、最后一个数据的下一个位置、最大容量的下一个位置。

size()capacity()能返回容器的元素个数和已开辟空间大小。

reserve()用于为容器重新分配空间,如果分配的空间小于现有空间容量,则不处理。否则,会重新分配空间,拷贝现有数据到新空间,并修改成员变量。

insert()用于向容器中插入元素,插入时需要将所在位置及其以后的元素全部向后移动,移动时是从后往前。

erase()用于删除某个元素,参数为要删除元素的迭代器。删除后还需要从前往后开始,逐一将元素向前移动。

resize()用于调整空间大小,并将未初始化的位置赋予指定的值。当调整的空间小于现有元素个数,会舍弃掉多出的元素。当调整的大小介于元素个数和有效空间之间时,会初始化这些多出来的部分。当调整的大小大于有效空间时,会重新开辟空间,并将现有数据拷贝过去,然后初始化多余部分。

其他接口比较简单,就不再单独描述。

	template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;vector():_start(nullptr),_finish(nullptr),_endofstorage(nullptr){}vector(const vector<T>& v):_start(nullptr), _finish(nullptr), _endofstorage(nullptr){reserve(v.capacity());for (const auto e : v) {push_back(e);}}template <class InputIterator>vector(InputIterator first, InputIterator last):_start(nullptr), _finish(nullptr), _endofstorage(nullptr){while (first != last) {push_back(*first);first++;}}~vector() {delete[] _start;_start = _finish = _endofstorage = nullptr;}iterator begin() {return _start;}iterator end() {return _finish;}const_iterator begin()const {return _start;}const_iterator end()const {return _finish;}size_t capacity() const{return _endofstorage - _start;}size_t size() const{return _finish - _start;}void reserve(size_t num) {if (num > capacity()) {size_t sz = size();T* tmp = new T[num];memcpy(tmp, _start, sz * sizeof(T));_start = tmp;_finish = _start + sz;_endofstorage = _start + num;}}iterator insert(iterator pos, const T& num){assert(pos >= begin() && pos <= end());if (_finish == _endofstorage) {size_t len = pos - _start;size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newcapacity);pos = _start + len;}iterator end = _finish - 1;while (end >= pos) {*(end + 1) = *end;end--;}*pos = num;_finish++;return pos;}iterator erase(iterator pos) {assert(pos >= begin() && pos < end());//删除指定下标的数据,并把其后的数据依次向前挪动iterator it = pos + 1;while (it != end()){*(it - 1) = *it;it++;}--_finish;return pos;}void push_back(const T& num){insert(end(), num);}T& operator[](size_t i) {assert(i < size());return *(_start + i);}void swap(vector<T>& v) {std::swap(v._start, _start);std::swap(v._finish, _finish);std::swap(v._endofstorage, _endofstorage);}vector<T>& operator=(vector<T> v) {swap(v);return *this;}void resize(size_t n, const T& val = T()) {//开的空间小于size(把超出范围的舍弃)介于size和capacity(初始化_finish以后的空间)//大于capacity(要重新开空间,并且初始化_finish以后的空间)if (n <= size()){_finish = _start + n;}else{if (n > capacity()){reserve(n);}while (_finish < _start + n) {*_finish = val;_finish++;}}}private:iterator _start;iterator _finish;iterator _endofstorage;};

在这里插入图片描述

三、reverse浅拷贝Bug

不难发现,在上述模拟实现的vector::reverse()中,如果模版类型T为std::string,那string中含有一些指针成员变量,通过memcpy将其浅拷贝到新空间后,又进行了一次delete,在生命周期结束时,也会进行delete,就会造成崩溃。

3.1 解决方案

既然要销毁原有空间,那为何不通过std::move将左值转换为右值,然后拷贝到新空间去。

下面通过伪代码进行举例:

template <typename T>
void MyVector<T>::reserve(size_t newCapacity)
{if (newCapacity <= m_capacity)return;T* newData = new T[newCapacity];for (size_t i = 0; i < m_size; i++){newData[i] = std::move(m_data[i]); // 深复制}delete[] m_data;m_data = newData;m_capacity = newCapacity;
}

上述代码没有考虑使用迭代器成员变量,容量和有效数据数量均为size_t类型,数据类型为T*

在这个实现中,我们使用了 std::move 函数将 m_data[i] 的内容移动到 newData[i] 中,从而进行深复制,避免了多个 std::string 对象共享同一块内存空间的问题。同时,在析构函数中也只需要简单地使用 delete[] 删除 m_data 指向的内存即可。

3.2 move函数

std::move 是一个 C++11 中引入的函数,它能够将一个对象的值转移到另一个对象中,同时将原对象置于一种“移动状态”,从而避免不必要的对象复制和销毁。

std::move 本质上是将一个左值引用转换成右值引用。在 C++ 中,左值引用是指向左值的引用,右值引用是指向右值的引用。左值是可以取地址的、有持久性的、具名的、具有明确定义的生命周期的值,而右值则是无法取地址的、临时的、没有名称的、生命周期不确定的值。在 C++11 中,我们可以通过使用 && 运算符来声明右值引用。

具体来说,当我们调用 std::move 函数时,它将接受一个左值引用,并返回一个右值引用,表示该对象的值可以被移动。通常情况下,我们会将返回的右值引用绑定到另一个对象上,从而将原对象的值移动到新对象中。例如:

std::vector<int> v1{1, 2, 3};
std::vector<int> v2 = std::move(v1); // 将 v1 的值移动到 v2 中

需要注意的是,在使用 std::move 移动对象时,只会移动对象的值,也就是说会将对象的成员变量的值复制到新的内存位置,但不会复制对象的状态,比如对象的引用计数、对象的资源句柄等等。移动完成后,原对象的值会被置为“移后”的状态,这个状态下对象的行为是未定义的,我们不能再对其进行读取或修改。在移动一个对象之后,如果我们需要继续使用该对象,就必须重新对其进行赋值或初始化。

http://www.lryc.cn/news/35766.html

相关文章:

  • 【C++进阶】四、AVL树(二)
  • React 服务端渲染
  • 【算法设计-搜索】回溯法应用举例(1)
  • C++基础了解-23-C++ 多态
  • 【GNN/深度学习】常用的图数据集(资源包)
  • Clickhouse中bitmap介绍以及计算留存Demo
  • 大数据是什么?学习后能找高薪工作么
  • 如何提取视频中的音频转文字?分享提效减负视频转文字方法
  • 脑机接口科普0018——前额叶切除手术
  • FPGA工程师面试——基础知识
  • 全国青少年软件编程(Scratch)等级考试一级真题——2019.12
  • 【Integrated Electronics系列——数字电子技术基础】
  • 【微信小程序】-- 页面处理总结(三十一)
  • Spring Batch使用详细例子
  • 漏洞预警|Apache Dubbo 存在反序列化漏洞
  • Tomcat源码分析-spring boot集成tomcat
  • 一个古老的html后台的模板代码
  • 支持向量回归删除异常值Python
  • 手把手开发一门程序语言JimLang (2)
  • DSF深度搜索时到底是如何回溯的(小tip)
  • Rust Web入门(八):打包发布
  • synchronize优化偏向锁
  • 算法习题之动态规划
  • 顺序表【数据结构】
  • SNAP中根据入射角和干涉图使用波段计算器计算垂直形变--以门源地震为例
  • Ubuntu20.04中Docker安装与配置
  • pytorch权值初始化和损失函数
  • maven将jar文件上传至本地仓库及私服
  • 前端学习第三阶段-第1、2章 JavaScript 基础语法
  • hibernate学习(二)