当前位置: 首页 > news >正文

FPGA实现多路并行dds

  • 目录

  1. 基本原理

    verilog代码

    仿真结果​

  2. 基本原理

    1.        多路并行dds,传统DDS的局限性在于输出频率有限。根据奈奎斯特采样定理,单路DDS的输出频率应小于系统时钟频率的一半。但是在很多地方,要使采样率保持一致,所以,为了提高采样率,可以采样多路并行dds技术,然后并转串输出,提高采样率。

       这里假设使用4个dds产生4路并行的dds,其中,4路dds的可以分别表示为:

  1. 可以从上式中看出,4路dds的pinc(频率控制字)是一样,差别是在其相位差(poff)DDS0的poff是0;DDS1的poff是fofs*1;,DDS2的poff是fofs*2;DDS3的poff是fofs*3

    假如fs是100MHz,调用4个并行的dds,然后按照顺序将4路并行的dds拼接成一路(并转串),这样就相当于采样率是4*fs,即400MHz采样率下的数据

  2. verilog代码

    1. 这里使用4路并行dds
  3. assign dds_pinc = 32'd107374182; //fs 100m.f_out =10M 30bit ;26843545 //107374182
    assign dds_poff = 32'd107374182*0; //fs 100m.f_out =10M 30bit ; 26843545
    //
    assign dds_pinc_1 = 32'd107374182; //fs 100m.f_out =10M 30bit ;
    assign dds_poff_1 = 32'd107374182*1; //fs 100m.f_out =10M 30bit ; //26843545
    //
    assign dds_pinc_2 = 32'd107374182; //fs 100m.f_out =10M 30bit ;
    assign dds_poff_2 = 32'd107374182*2; //fs 100m.f_out =10M 30bit ;
    //
    assign dds_pinc_3 = 32'd107374182; //fs 100m.f_out =10M 30bit ;
    assign dds_poff_3 = 32'd107374182*3; //fs 100m.f_out =10M 30bit ;
    assign dds_t_data = {dds_poff,dds_pinc};
    assign dds_t_data_1 = {dds_poff_1,dds_pinc_1};
    assign dds_t_data_2 = {dds_poff_2,dds_pinc_2};
    assign dds_t_data_3 = {dds_poff_3,dds_pinc_3};
    //
    always@(posedge clk) begin if(rst == 1'b1)begin gen_valid <= 1'b0;end else if(start == 1'b1)begin gen_valid  <= 1'b1;end else begin gen_valid <= gen_valid;end
    endassign sin_0 = m_axis_data_tdata[31:16];
    assign cos_0 = m_axis_data_tdata[15:0];
    assign sin_1 = m_axis_data_tdata_1[31:16];
    assign cos_1 = m_axis_data_tdata_1[15:0];
    assign sin_2 = m_axis_data_tdata_2[31:16];
    assign cos_2 = m_axis_data_tdata_2[15:0];
    assign sin_3 = m_axis_data_tdata_3[31:16];
    assign cos_3 = m_axis_data_tdata_3[15:0];
    dds100m_0 dds100m_0_inst (.aclk(clk),                                  // input wire aclk.s_axis_config_tvalid(gen_valid),  // input wire s_axis_config_tvalid.s_axis_config_tdata(dds_t_data),    // input wire [63 : 0] s_axis_config_tdata.m_axis_data_tvalid(dds_data_valid),      // output wire m_axis_data_tvalid.m_axis_data_tdata(m_axis_data_tdata),        // output wire [31 : 0] m_axis_data_tdata.m_axis_phase_tvalid(),    // output wire m_axis_phase_tvalid.m_axis_phase_tdata()      // output wire [31 : 0] m_axis_phase_tdata
    );
    dds100m_0 dds100m_1_inst (.aclk(clk),                                  // input wire aclk.s_axis_config_tvalid(gen_valid),  // input wire s_axis_config_tvalid.s_axis_config_tdata(dds_t_data_1),    // input wire [63 : 0] s_axis_config_tdata.m_axis_data_tvalid(dds_data_valid),      // output wire m_axis_data_tvalid.m_axis_data_tdata(m_axis_data_tdata_1),        // output wire [31 : 0] m_axis_data_tdata.m_axis_phase_tvalid(m_axis_phase_tvalid),    // output wire m_axis_phase_tvalid.m_axis_phase_tdata(m_axis_phase_tdata)      // output wire [31 : 0] m_axis_phase_tdata
    );
    dds100m_0 dds100m_2_inst (.aclk(clk),                                  // input wire aclk.s_axis_config_tvalid(gen_valid),  // input wire s_axis_config_tvalid.s_axis_config_tdata(dds_t_data_2),    // input wire [63 : 0] s_axis_config_tdata.m_axis_data_tvalid(dds_data_valid),      // output wire m_axis_data_tvalid.m_axis_data_tdata(m_axis_data_tdata_2),        // output wire [31 : 0] m_axis_data_tdata.m_axis_phase_tvalid(m_axis_phase_tvalid),    // output wire m_axis_phase_tvalid.m_axis_phase_tdata(m_axis_phase_tdata)      // output wire [31 : 0] m_axis_phase_tdata
    );
    dds100m_0 dds100m_3_inst (.aclk(clk),                                  // input wire aclk.s_axis_config_tvalid(gen_valid),  // input wire s_axis_config_tvalid.s_axis_config_tdata(dds_t_data_3),    // input wire [63 : 0] s_axis_config_tdata.m_axis_data_tvalid(dds_data_valid),      // output wire m_axis_data_tvalid.m_axis_data_tdata(m_axis_data_tdata_3),        // output wire [31 : 0] m_axis_data_tdata.m_axis_phase_tvalid(m_axis_phase_tvalid),    // output wire m_axis_phase_tvalid.m_axis_phase_tdata(m_axis_phase_tdata)      // output wire [31 : 0] m_axis_phase_tdata
    );

    仿真结果

  4. 可以从上图中看出,输出的余弦波有明显的相位差,最后只需要将这4路并行的dds拼接起来(并转出),即可实现4*fs 采样率。
http://www.lryc.cn/news/357239.html

相关文章:

  • ArcgisPro3.1.5安装手册
  • 三大主流框架
  • 【C++】:vector容器的底层模拟实现迭代器失效隐藏的浅拷贝
  • 必看项目|多维度揭示心力衰竭患者生存关键因素(生存分析、统计检验、随机森林)
  • centos安装Redis
  • 继承与多态2
  • 在RT-Thread下为MPU手搓以太网MAC驱动-3
  • Cocos Creator 2D物理引擎的使用详解
  • 618局外人抖音:别人挤压商家“拼价格”,它默默联合商家“抢用户”?
  • 【Unity AR开发插件】五、运行示例程序
  • JavaScript className 类名属性操作
  • 做场外个股期权怎么询价
  • Databend 开源周报第 146 期
  • Android12.0 SIM卡语言自适应
  • 滴滴一季度营收同比增长14.9%至491亿元 经调整EBITA盈利9亿元
  • C语言 指针——指针变量的定义、初始化及解引用
  • 详解 Spark 的运行架构
  • 盲盒小程序开发,为市场带来的新机遇
  • stm32学习-流水灯
  • GIGE 协议摘录
  • 服务器的远程桌面无法连接,服务器远程桌面无法连接问题处理教程
  • 【机器学习300问】105、计算机视觉(CV)领域有哪些子任务?
  • 安卓手机APP开发__超宽带(UWB)通信
  • 儿童股骨干骨折用儿童悬吊如何进行康复
  • vscode plantuml插件安装使用(windows)
  • Linux内核编译流程3.10
  • OSPF多区域组网实验(华为)
  • 解密MySQL二进制日志:深度探究mysqlbinlog工具
  • 妙解设计模式之策略模式
  • Linux DHCP server 配置