当前位置: 首页 > news >正文

深度学习——自己的训练集——图像分类(CNN)

图像分类

    • 1.导入必要的库
    • 2.指定图像和标签文件夹路径
    • 3.获取文件夹内的所有图像文件名
    • 4.获取classes.txt文件中的所有标签
    • 5.初始化一个字典来存储图片名和对应的标签
    • 6.遍历每个图片名的.txt文件
    • 7.随机选择一张图片进行展示
    • 8.构建图像的完整路径
    • 9.加载图像
    • 10.检查图像是否为空

随机找100张图片,然后进行打标签,我用的labelImg打标签,存储的格式为.txt格式。
图片存储在‘561’文件夹中,标签存储在‘99’文件夹中。
把100图片的标签分别是sad,happy,amazed,anger。

1.导入必要的库

cv2: 这是OpenCV库的别名,它是一个强大的计算机视觉库,用于图像和视频处理。
matplotlib.pyplot as plt: Matplotlib是一个绘图库,pyplot是其中的一个模块,它提供了一个类似于MATLAB的绘图框架。plt是matplotlib.pyplot的常用别名。
numpy as np: NumPy是一个用于科学计算的库,它提供了高效的数组处理能力,对于图像处理等任务非常有用。
os: 这个模块提供了与操作系统交互的功能,比如文件和目录操作。
random: 这个模块提供了生成随机数的函数。

import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import random

2.指定图像和标签文件夹路径

images_folder = 'D:/rgzn/face/DATASET/561'
labels_folder = 'D:/rgzn/face/DATASET/99'

3.获取文件夹内的所有图像文件名

os.listdir()函数用于列出指定目录下的所有文件和子目录。
os.path.isfile()函数用于检查一个路径是否指向一个文件。
os.path.join()函数用于将目录和文件名组合成一个完整的文件路径。

这行代码的目的是从一个指定的文件夹中获取所有图像文件的列表。

image_files = [f for f in os.listdir(images_folder) if os.path.isfile(os.path.join(images_folder, f))]

os.listdir(images_folder):这个函数调用返回一个列表,包含images_folder目录下的所有文件和子目录的名称。

for f in os.listdir(images_folder):这是一个循环,它遍历images_folder目录下的每个文件和子目录的名称。在每次迭代中,f变量被设置为当前文件或子目录的名称。
os.path.isfile(os.path.join(images_folder, f)):这个条件用于检查f是否是一个文件。os.path.join(images_folder, f)创建一个完整的文件路径,将images_folder目录的路径和f(文件或子目录的名称)连接起来。

[f for f in os.listdir(images_folder) if os.path.isfile(os.path.join(images_folder, f))]:这个列表推导式创建一个新的列表,只包含那些通过os.path.isfile()检查确认为文件的f值。

4.获取classes.txt文件中的所有标签

with open(os.path.join(labels_folder, 'classes.txt'), 'r') as file:labels = file.readlines()
labels = [label.strip() for label in labels]  # 去除末尾的换行符

with open(os.path.join(labels_folder, ‘classes.txt’), ‘r’) as file:

os.path.join(labels_folder, 'classes.txt'):这个函数调用用于创建一个完整的文件路径,将labels_folder目录的路径和classes.txt文件名连接起来。
with open(...) as file:这是一个上下文管理器(context manager),它用于自动处理文件资源的打开和关闭。当with语句执行完成后,文件会自动关闭,即使遇到异常也是如此。
file:这是上下文管理器创建的一个文件对象,可以用来读取文件内容。

labels = file.readlines()

file.readlines():这个方法调用用于读取文件中的所有行,并将它们作为一个字符串列表返回。每一行都是一个列表项。
labels = ...:这个赋值语句将读取到的行列表赋值给变量labels。

labels = [label.strip() for label in labels]

这是一个列表推导式(list comprehension),它遍历labels列表中的每个字符串(即文件中的每行内容)。
label.strip():这个方法调用用于去除字符串首尾的空白字符(如空格、换行符等)。
for label in labels:这个循环遍历labels列表中的每个字符串。
[...]:这个列表推导式创建一个新的列表,包含去除空白字符后的字符串。

5.初始化一个字典来存储图片名和对应的标签

image_labels = {}

6.遍历每个图片名的.txt文件

for image_file in image_files:# 构建图片名.txt文件的完整路径
image_name = os.path.splitext(image_file)[0]  # 获取不带扩展名的图片名txt_path = os.path.join(labels_folder, image_name + '.txt')# 读取图片名.txt文件的内容with open(txt_path, 'r') as file:lines = file.readlines()# 假设每行包含一个数字序列numbers = lines[0].strip().split()  # 假设每行由空格分隔# 根据数字序列的第一个数字确定标签# 根据您提供的映射关系label_index = int(numbers[0])label = labels[label_index]# 将图片名和对应的标签存储在image_labels字典中
image_labels[image_file] = label

image_name = os.path.splitext(image_file)[0]:

os.path.splitext(image_file):这个函数调用用于将image_file(一个文件名)分割成两部分:文件名和扩展名。返回的元组中的第一部分是文件名,第二部分是扩展名。
[0]:这个索引操作符用于获取元组中的第一个元素,即不带扩展名的文件名。

txt_path = os.path.join(labels_folder, image_name + ‘.txt’):

os.path.join(labels_folder, image_name + '.txt'):这个函数调用用于创建一个完整的文件路径,将labels_folder目录的路径和image_name(不带扩展名的文件名)连接起来,并在最后加上.txt扩展名。
txt_path:这个变量存储了.txt文件的完整路径。

with open(txt_path, 'r') as file::

with open(...) as file::这是上下文管理器,用于自动处理文件资源的打开和关闭。
file:这个变量是上下文管理器创建的文件对象,用于读取.txt文件的内容。

lines = file.readlines():

file.readlines():这个方法调用用于读取.txt文件中的所有行,并将它们作为一个字符串列表返回。每一行都是一个列表项。
lines:这个变量存储了.txt文件中所有行的列表。

numbers = lines[0].strip().split():

lines[0]:这个索引操作符用于获取.txt文件中第一行的内容。
.strip():这个方法调用用于去除字符串首尾的空白字符(如空格、换行符等)。
.split():这个方法调用用于根据指定的分隔符(在这个例子中是空格)将字符串分割成列表。
numbers:这个变量存储了.txt文件第一行内容去除空白字符并分割成列表后的版本。

label_index = int(numbers[0]):

int(numbers[0]):这个函数调用用于将列表numbers的第一个元素(即标签的索引)转换为整数。
label_index:这个变量存储了标签的索引。

label = labels[label_index]:

labels[label_index]:这个索引操作符用于根据label_index变量中存储的索引,从labels列表中获取对应的标签字符串。
label:这个变量存储了从.txt文件中解析出的标签。

7.随机选择一张图片进行展示

#调用用于生成一个随机整数,其范围是从0到image_files列表的长度减1。
random_index = random.randint(0, len(image_files) - 1)#根据random_index变量中存储的随机索引值,从image_files列表中获取对应的图像文件名。
image_name = image_files[random_index]#用于根据image_name变量中存储的图像文件名,从image_labels字典中获取对应的标签。
label = image_labels[image_name]

8.构建图像的完整路径

创建一个完整的文件路径,将images_folder目录的路径和image_name连接起来。
image_path:这个变量存储了随机选择的图像文件的完整路径。

image_path = os.path.join(images_folder, image_name)

9.加载图像

读取图像文件

image = cv2.imread(image_path)

10.检查图像是否为空

#用于确定image变量是否为None
if image is None:
#图像加载失败,打印一条错误消息。print("Error: Failed to load image.")
else:
# 显示图像
#将图像从OpenCV的BGR颜色空间转换为Matplotlib的RGB颜色空间。OpenCV默认使用BGR颜色空间,而大多数图像处理库和图形界面(如Matplotlib)使用RGB颜色空间。plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title(f'Label: {label}  Image: {image_name}')
#用于关闭图像的坐标轴。这使得图像占据整个窗口,而不是在坐标轴周围留有空白。
plt.axis('off')
#显示图像。
plt.show()

在这里插入图片描述

http://www.lryc.cn/news/355977.html

相关文章:

  • goimghdr,一个有趣的 Python 库!
  • 每小时电量的计算sql
  • 自动化您的任务——crewAI 初学者教程
  • K8s集群中的Pod调度约束亲和性与反亲和性
  • kafka之consumer参数auto.offset.reset
  • 回答篇二:测试开发高频面试题目
  • React18 apexcharts数据可视化之甜甜圈图
  • 如何通过OpenHarmony的音频模块实现录音变速功能?
  • 探索 Rust 语言的精髓:深入 Rust 标准库
  • Log360:护航安全,远离暗网风险
  • react使用antd警告:Warning: findDOMNode is deprecated in StrictMode.
  • Docker Swarm - 删除 worker 节点
  • AI视频智能分析技术赋能营业厅:智慧化管理与效率新突破
  • 骨折分类数据集1129张10类别
  • Follow Your Pose: Pose-Guided Text-to-Video Generation using Pose-Free Videos
  • 记录一次开源 MaxKey 安装部署
  • k8s基础命令
  • 【云原生_K8S系列】认识 Kubernetes
  • 性能猛兽:OrangePi Kunpeng Pro评测!
  • 六一儿童节创意项目:教你用HTML5和CSS3制作可爱的雪糕动画
  • 日用百货元宇宙 以科技创新培育产业新质生产力
  • 云服务器购买之后到部署项目的流程
  • 2025秋招计算机视觉面试题(二)
  • ECU 关键通讯信息安全事件记录清单
  • webpack5基础和开发模式配置
  • 11111111111111
  • Oracle实践|内置函数之日期与时间函数
  • 内网穿透工具
  • JAVA自制小游戏之推箱子
  • Media Encoder 2024 for Mac媒体编码器安装教程ME2024安装包下载