当前位置: 首页 > news >正文

【机器学习300问】100、怎么理解卷积神经网络CNN中的池化操作?

一、什么是池化?

        卷积神经网络(CNN)中的池化(Pooling)操作是一种下采样技术,其目的是减少数据的空间维度(宽度和高度),同时保持最重要的特征并降低计算复杂度。池化操作不仅能够减少模型对计算资源的需求,还能增加模型的鲁棒性(对图像中的小变形不敏感),并帮助提取图像的关键特征。

二、常见池化类型

(1)最大池化

        最大池化(Max Pooling)是从输入的每个预定义区域选取最大值作为输出。这是最常用的池化方法,有助于保持图像中的重要特征。

(2)平均池化

       平均池化 (Average Pooling)是取输入区域内的平均值作为输出。相比最大池化,平均池化更能平滑特征并减少噪声。

三、池化操作的目的

池化的主要作用解释
降维通过减少特征图的尺寸,降低模型的计算复杂度和内存需求。
特征不变性增强模型对输入数据中的平移、旋转和尺度变化的不变性,使得模型更加鲁棒。
防止过拟合通过减少参数数量,降低模型过度拟合训练数据的风险。
提取重要特征仅保留每个区域的最重要信息,如最大值或平均值,忽略不那么重要的细节。
增大感受野随着网络的深入,池化帮助后面的层能够“看到”原始输入的更大范围,捕捉更全局的特征。

四、池化层的参数

池化操作中有三个重要的参数,它们分别是:池化窗口大小,步长,填充

参数解释
池化窗口大小(Kernel Size)决定了一次池化操作覆盖输入特征图的区域大小,例如2x2或3x3。缩写成f
步长(stride)池化窗口在特征图上移动的间隔,直接影响输出特征图的大小。缩写成s
填充(padding)通常在卷积层中更常见,但在某些情况下也可能应用于池化层,以控制输出尺寸。缩写成p

        下图描述的是如何对一个4x4尺寸的特征图中的每个局部区域应用平均池化。具体而言,我们采用一个2x2大小的过滤器(filter),以步长为2的方式遍历特征图,对过滤器覆盖的每个2x2邻域内的像素值进行平均计算,并将得到的平均值作为结果输出到下一层。这种通过局部区域均值采样的技术即被称为平均池化。 

用f=2的池化窗口,对p=0的输入数据,进行以步长s=2的平均池化操作

五、池化操作前后尺寸变化

尺寸的公式如下:

[\frac{H-f}{s}+1] \times [\frac{W-f}{s}+1] \times C

池化操作前后尺寸大小
参数解释
H池化前的行高
W池化前的列宽
C池化前的通道数
h池化后的行高,h =\left \lfloor \frac{H-f}{s}+1 \right \rfloor,向下取整。
w池化后的列宽,w =\left \lfloor \frac{W-f}{s}+1 \right \rfloor,向下取整。
c池化后的通道数,c=C,池化后的通道数和池化前一样。
f池化窗口打大小,也就是filter的fxf尺寸
s池化操作的步长

        因为一般池化操作都没有padding,也就是p=0 。故按照\frac{n + 2p - f}{s} + 1公式,带入p=0就得到上面图中的公式,如果有padding可按照\frac{n + 2p - f}{s} + 1计算。

http://www.lryc.cn/news/354888.html

相关文章:

  • RPA机器人流程自动化如何优化人力资源工作流程
  • OpenHarmony开发者大会2024:鸿心聚力 智引未来
  • 新楚文化知网收录文学艺术类期刊投稿
  • 基于vue3速学angular
  • 链游中的代币(Token)或加密货币(Cryptocurrency)是如何产生和使用的?
  • 2024年5月23日 (周四) 叶子游戏新闻
  • 猫毛过敏终结者!宠物空气净化器让你告别红眼和喷嚏
  • xgboost项目实战-保险赔偿额预测与信用卡评分预测001
  • 子网划分,交换机原理与配置
  • 记mapboxGL实现鼠标经过高亮时的一个问题
  • AI重塑了我的工作流
  • vue使用Less报错semi-colon expectedcss(css-semicolonexpected)的解决方法
  • 如何使用golang自带工具对代码进行覆盖率测试
  • Android studio版本和Android gradle plugin版本对应表
  • JavaRedis-主从集群-分片-数据结构-回收处理-缓存问题
  • Java原生JDBC概览
  • C# 跨线程访问UI组件,serialPort1串口接收数据
  • D - New Friends(AtCoder Beginner Contest 350)
  • 【FAQ】HarmonyOS SDK 闭源开放能力 —Account Kit(2)
  • Web组态可视化编辑器 快速绘制组态图
  • 怎样在网上赚点零花钱?推荐十个正规的赚钱兼职平台
  • 手动操作很麻烦?试试这个自动加好友神器吧!
  • 金额转大写
  • vue的axios配置超时时间;单个接口配置响应时间
  • leetcode-盛水最多的容器-109
  • VMware ESXi中安装Proxmox VE
  • Java(其十二)--集合·初级
  • 疯狂“造人”!美国两党共推新法案,5年培养100万AI及量子人才
  • Python 文件操作指南:使用 open 和 with open 实现高效读写
  • FasterNet代码阅读