当前位置: 首页 > news >正文

YOLOv8初体验:检测、跟踪、模型部署

安装

YOLOv8有两种安装方式,一种是直接用pip命令安装:

pip install ultralytics

另外一种是通过源码安装:

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e '.[dev]'

安装完成后就可以通过yolo命令在命令行进行使用了。

目标检测

使用YOLOv8进行目标检测,可以使用下面的命令:

yolo task=detect mode=predict model=yolov8n.pt source=ultralytics/assets/bus.jpg imgsz=640 show=True save=True

如果模型权重不存在,程序会自动从GitHub中下载。如果对命令行的参数不了解,可以参考官方文档的说明,也可以直接看ultralytics代码仓库中的ultralytics/yolo/cfg/default.yaml文件,里面有所有参数的说明和默认值。

上面的命令运行成功后,带检测结果的图片被保存到runs/detect/predict目录下,如下图所示:

跑视频的效果可以看下面这个视频:

用TensorRT部署的YOLOv8模型,来看看效果怎么样

目标跟踪

YOLOv8目前支持BoT-SORTByteTrack两种多目标跟踪算法,默认的目标跟踪算法为BoT-SORT,使用方式如下:

yolo track model=yolov8n.pt source=test.avi show=True save=True

如果要使用ByteTrack跟踪算法,可以添加命令行参数tracker=bytetrack.yaml

下面的视频是使用BoT-SORT算法的跟踪效果,效果还是不错的。

YOLOv8+BoT-SORT目标检测与跟踪

模型部署

如果要用TensorRT部署YOLOv8,需要先使用下面的命令将模型导出为onnx格式:

yolo export model=yolov8n.pt format=onnx opset=12 

YOLOv83个检测头一共有80x80+40x40+20x20=8400个输出单元格,每个单元格包含x,y,w,h4项再加80个类别的置信度总共84项内容,所以通过上面命令导出的onnx模型的输出维度为1x84x8400

这样的通道排列顺序有个问题,那就是后处理的时候会造成内存访问不连续。为了解决这个问题,我们可以修改一下代码,具体做法是把ultralytics/nn/modules.py文件中的421行做如下修改,交换一下张量y的通道顺序:

修改代码后需要执行前面的安装命令pip install -e '.[dev]'使代码生效。这样修改后再执行上面的模型导出命令,模型的输出维度变为1x8400x84

导出onnx模型后,就可以用TensorRT进行部署了。如何使用TensorRTC++接口部署ONNX模型可以参考我之前给【自动驾驶之心】公众号写的这篇文章:手把手教学!TensorRT部署实战:YOLOv5的ONNX模型部署。

YOLOv5相比,部署YOLOv8的不同之处就是做后处理解析模型输出结果的时候不需要去解析objectness这项内容了,其他都类似。

使用TensorRT框架在我的GeForce GTX 1650 Ti显卡上部署YOLOv8的结果如下:

模型输入尺寸模型精度耗时(ms)
yolov8n.onnx640x640FP327
yolov8s.onnx640x640FP3212
yolov8m.onnx640x640FP3229
yolov8l.onnx640x640FP3252
yolov8x.onnx640x640FP3283
yolov8n.onnx640x640FP164
yolov8s.onnx640x640FP167
yolov8m.onnx640x640FP1614
yolov8l.onnx640x640FP1625
yolov8x.onnx640x640FP1640

YOLOv5测试结果:

模型输入尺寸模型精度耗时(ms)
yolov5n.onnx640x640FP327
yolov5s.onnx640x640FP3210
yolov5m.onnx640x640FP3221
yolov5l.onnx640x640FP3241
yolov5x.onnx640x640FP3276
yolov5n.onnx640x640FP165
yolov5s.onnx640x640FP166
yolov5m.onnx640x640FP1611
yolov5l.onnx640x640FP1621
yolov5x.onnx640x640FP1638

从上面的测试结果来看,YOLOv8YOLOv5稍微慢一点点。

http://www.lryc.cn/news/35415.html

相关文章:

  • Vue 监听(watch handler)
  • 前端代码质量-圈复杂度原理和实践
  • 汽车微控制器芯片F280039CPZRQ1、F280039CSPM、F280039CSPN规格参数
  • 禾观科技三面经历
  • Spring Boot 实现接口幂等性的 4 种方案
  • Android Studio开发APP
  • Spring之实例化Bean _ @Resource和@Autowired实现原理(3)
  • 华为HCIE学习之Openstack Cinder组件(cinder对接glusterfs)
  • 关于Go语言的底层,你想知道的都在这里!
  • 每日一问-ChapGPT-20230308-关于技术与思考的问题
  • Oracle表分区的创建、新增、拆分
  • 如何快速升级Java 8 到Java11
  • 内卷把同事逼成了“扫地僧”,把Git上所有面试题整理成足足24W字Java八股文
  • 【计组】主存储器有关知识梳理
  • QT对象树
  • 什么是B+树
  • 【Unity游戏破解】外挂原理分析
  • windows 关闭指定端口进程
  • 虚拟化系列教程:创建 KVM 虚机的几种方式
  • MacBook安装Golang Oracle数据库驱动程序
  • Elasticsearch 核心技术(七):IK 中文分词器的安装、使用、自定义字典
  • 【LeetCode】剑指 Offer(19)
  • 吐血整理,web自动化测试,POM模式搭建自动化测试框架(超级详细)
  • 【数据库原理复习】索引 视图 sql语句
  • 【HDFS】IPC重试
  • Revit导出CAD图纸操作及批量导出
  • 【批处理脚本】-3.4-goto命令详解
  • 超详细CentOS7 NAT模式(无图形化界面即最小安装)网络配置
  • 【可信平台】开证问题汇总--1.无采购入库记录,2.箱码无产出记录
  • RolePred: Open-Vocabulary Argument Role Prediction for Event Extraction 论文解读