当前位置: 首页 > news >正文

我用LLaMA-Factory微调大模型来实现商品评论情感分析,准确率高达91.70%

大家好,我是程序锅。

最近在modelscope上闲逛的时候,在数据集板块发现有一个商品评论情感预测数据集。这个数据集源自一个比赛,它的目的是为了预测电商平台顾客的评论是好评还是差评。

数据示例如下所示(其中0代表差评,1代表好评):

这个比赛是2021年7月开始举办的。那个时候还没有ChatGPT,如果需要做商品评论情感预测,是需要分词、预处理、选择模型等等一系列机器学习方法。而我最近正好在学习LLaMA-Factory,正好试一试用它来微调大模型,看看最终情感预测结果如何?

好的,首先我们先上结果。

大模型微调+提示工程大模型+提示工程
准确率91.70%79.43%

使用大模型微调相比不微调,提升12.27%

整体技术路线采用:LLaMA-Factory + Lora + Qwen1.5-7B

教程视频如下:

https://www.bilibili.com/video/BV1siuietEYX/?vd_source=d0aa621a464f99754d7108e57e32eab9

下面我们来看如何微调大模型来做商品评论情感分析。微调过程与传统深度学习方法类似。无非是准备数据、配环境、训练、最后评测。

一、数据准备

采用数据集的来自于modelscope的商品评论情感预测,其中训练数据集45366条,测试数据集5032条。

下载数据集:

from modelscope.msdatasets import MsDataset
ds_train =  MsDataset.load('DAMO_NLP/jd', subset_name='default', split='train')from modelscope.msdatasets import MsDataset
ds_val =  MsDataset.load('DAMO_NLP/jd', subset_name='default', split='validation')

下载后的数据集无法直接应用到微调,我们还需要结合提示工程,将数据集转化为大模型微调所需要的格式(即问答对的形式)

数据转化代码如下:

import json
from modelscope.msdatasets import MsDataset
from tqdm import *
ds_train =  MsDataset.load('DAMO_NLP/jd', subset_name='default', split='train')
ds_val =  MsDataset.load('DAMO_NLP/jd', subset_name='default', split='validation')
print(len(ds_train["sentence"]))
print(len(ds_val["sentence"]))
outout = []
SYSTEM_PROMPT = "我在做商品评论情感预测,需根据用户评价判断是好评还是差评,其中输出0代表差评,输出1代表好评,请严格保证输出结果为整数并且只能是0或者1。输入的用户评价为:"
for i in tqdm(range(len(ds_val["sentence"]))):sentence = ds_val["sentence"][i]if (ds_val["label"][i] == None or ds_val["sentence"][i] == None ):continuelabel = str(int(ds_val["label"][i]))outout.append({"instruction":SYSTEM_PROMPT+sentence,"input":"","output":label})  
with open("jd_val.json", "w") as json_file:json.dump(outout, json_file,ensure_ascii=False)

二、环境依赖

  • LLaMA-Factory
  • Qwen1.5-7B

可以自己去安装部署,我也准备了相应依赖pip list

具体关于LLaMA-Factory的部署、使用和自定义数据集,可以参考这篇文章:

https://zhuanlan.zhihu.com/p/696631776

三、训练

整体训练耗时2.5小时,采用lora的方式,loss图如下所示:

训练可以采用web页面训练CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui,也可以采用命令行的方式训练,具体训练执行命令如下所示:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_train True \--model_name_or_path /home/guo/hub/Qwen1___5-7B-Chat \ #选择大模型下载位置--preprocessing_num_workers 16 \--finetuning_type lora \--template qwen \--flash_attn auto \--dataset_dir data \--dataset jd \ #设置为你的数据集--cutoff_len 1024 \--learning_rate 5e-05 \--num_train_epochs 3.0 \--max_samples 100000 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 8 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 5 \--save_steps 100 \--warmup_steps 0 \--optim adamw_torch \--packing False \--report_to none \--output_dir saves/Qwen1.5-7B-Chat/lora/train_2024-05-23-14-32-35 \--fp16 True \--plot_loss True \--lora_rank 8 \--lora_alpha 16 \--lora_dropout 0 \--lora_target q_proj,v_proj

四、评测

LLaMA-Factory也支持用web界面的方式评估和预测,具体评测使用方式如下所示。

评测结束后,得到一个generated_predictions.jsonl

{"label": "1", "predict": "1"}
{"label": "0", "predict": "0"}
{"label": "1", "predict": "1"}
{"label": "1", "predict": "1"}
{"label": "0", "predict": "0"}
{"label": "1", "predict": "1"}
{"label": "1", "predict": "1"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "0", "predict": "0"}
{"label": "1", "predict": "1"}
...

自己写一个准确率计算代码Acc=(TP+TN)/(TP+TN+FP+FN)

五、最后

这是一个大模型微调入门的一个小案例,lora权重、数据集全部开源放到我的github repo。

https://github.com/GuoCoder/ai-app

后续我还会分享更多关于AI应用的案例。也欢迎大家点赞、收藏、关注我。

http://www.lryc.cn/news/353552.html

相关文章:

  • 四大进制--详解--以及进制转换规则
  • 谈谈API和人工智能领域的开发和使用以及AI大模型开发进程。
  • 用Python Pygame做的一些好玩的小游戏
  • 【吊打面试官系列】Java高并发篇 - ThreadLocal 是什么?有什么用?
  • Spring MVC的数据转换及数据格式化:java 转换器接口(将一种类型的对象转换为另一种类型及其子类对象)
  • 【开源】多语言大型语言模型的革新:百亿参数模型超越千亿参数性能
  • DDL—表—数据类型—日期时间类型相关语法
  • Ant Design pro 6.0.0 搭建使用以及相关配置
  • Vue生命周期钩子是如何实现的
  • 002 仿muduo库实现高性能服务器组件_整体框架
  • 车道线识别与预警系统LDWS(代码+教程)
  • Python基础学习笔记(七)——元组
  • 安卓开发:相机水印设置
  • Excel工作表单元格单击选中事件,VBA动态数值排序
  • 数据结构~~链式二叉树
  • 线程池,日志
  • vue的图片上传
  • 题解 P1150
  • 牛客NC324 下一个更大的数(三)【中等 双指针 Java/Go/PHP/C++】参考lintcode 52 · 下一个排列
  • Vue3解决“找不到模块“@/components/xxx.vue”或其相应的类型声明”
  • nginx的Connection refused
  • Haskell 的高阶函数(Higher-order functions)
  • Unity websocket客户端
  • 每日一题——博弈论(枚举与暴力)
  • pytorch笔记:torch.nn.Flatten()
  • 一个人应该怎么操作抖音小店呢?店铺操作流程给你讲解清楚!
  • “等保测评与安全运维的协同:保障企业网络安宁
  • python抽取pdf中的参考文献
  • Java进阶学习笔记21——泛型概念、泛型类、泛型接口
  • 深入理解计算机系统 家庭作业4.55