当前位置: 首页 > news >正文

PyTorch中定义自己的数据集

文章目录

    • 1. 简介
    • 2. 查看PyTorch自带的数据集(可视化)
    • 3. 准备材料
      • 3.1 图片数据
      • 3.2 标签数据
    • 4. 方法

1. 简介

尽管PyTorch提供了许多自带的数据集,如MNIST、CIFAR-10、ImageNet等,但它们对于没有经验的用户来说,理解数据加载器的工作原理以及如何正确地配置数据加载器可能会有一定难度。 用户需要了解所使用的数据集,包括数据集的内容、结构、标签等信息。对于一些复杂的数据集,用户可能需要理解数据集的结构和标签的含义。通过定义自己的数据集类,您可以更好地控制数据的加载和处理过程,提高代码的灵活性、可读性和可维护性,同时更好地满足模型训练的需求。

2. 查看PyTorch自带的数据集(可视化)

为了更好的定义自己的数据集,我们首先查看PyTorch自带的数据集的内容,代码如下

# 导入所需的库
import matplotlib.pyplot as plt  # 导入Matplotlib库,用于可视化
import torch  # 导入PyTorch库
from torchvision.datasets import MNIST  # 从torchvision中导入MNIST数据集
from torchvision import transforms  # 导入transforms模块,用于数据预处理
import numpy as np  # 导入NumPy库# 加载MNIST数据集
train_mnist_data = MNIST(root='./data',  # 数据集存储路径train=True,  # 加载训练集transform=transforms.Compose([transforms.Resize(size=(28, 28)), transforms.ToTensor()]),  # 数据预处理操作download=True)  # 如果数据集不存在,则自动下载# 设置要显示的样本数量
num_samples = 10# 创建包含多个子图的大图窗口
fig, axes = plt.subplots(1, num_samples, figsize=(10, 6))# 遍历选择要显示的样本
for i in range(num_samples):# 从数据集中获取图像数据和标签image, label = train_mnist_data[i]# 在子图中显示图像axes[i].imshow(image.squeeze().numpy(), cmap='gray')  # 使用imshow函数显示图像,将张量转换为NumPy数组axes[i].set_title(f"Label: {label}")  # 设置子图标题,显示图像对应的标签axes[i].axis('off')  # 关闭坐标轴显示# 将图像保存为PNG格式的图片文件,文件名以图像的标签命名plt.imsave(f"./data/mnist_images/{label}.png", image.squeeze().numpy(), cmap='gray')# 显示图形窗口
plt.show()

这里,我们使用MNIST类加载MNIST数据集。在加载数据集时,通过transform参数指定了数据预处理操作,包括将图像大小调整为28x28像素,并将图像转换为张量。train=True表示加载训练集,download=True表示如果数据集不存在则自动下载到指定的路径。

接下来,我们选择一些样本进行可视化。我们在一个子图中显示了10个样本,每个样本对应一个数字图像和其对应的标签。通过循环遍历这些样本,从数据集中获取图像数据和标签,并使用Matplotlib的imshow()函数将图像显示在子图中。
在这里插入图片描述

同时,使用imsave()函数将每个图像保存为PNG格式的图片文件,文件名以标签命名。最后,使用plt.show()显示图形窗口,显示图像的同时也会将图像保存到指定的路径中。这段代码的执行结果是显示10张MNIST数据集中的数字图像,并将这些图像保存到指定路径下。保存的图片如下所示

在这里插入图片描述

通过上面程序可以看到,数据集主要是由图片数据和对应的标签构成,那么我们就可以用这两个主要构成成分来构建自己的数据集。

3. 准备材料

3.1 图片数据

这里我们就用刚才保存的十张图片,即

在这里插入图片描述

当然,你也可以准备其它的图片,并给图片分别命名为“0.png, 1.png, …”。

这里,十张图片的相对路径为

imgs_path = "./data/mnist_images"

注:你们要根据自己存储的路径来给定。

3.2 标签数据

创建一个txt文件,为每一幅图片指定标签数据,如下所示

在这里插入图片描述

这里,txt文件的相对路径为

labels_path = "labels.txt"

4. 方法

在PyTorch中,您可以通过创建一个自定义的数据集类来定义自己的数据集。这个自定义类需要继承自torch.utils.data.Dataset类,并且实现两个主要的方法:__len____getitem____len__方法应该返回数据集的长度,而__getitem__方法则根据给定的索引返回数据集中的样本。

下面我们展示如何创建一个自定义的数据集类:

import os  # 导入os模块,用于操作文件路径
from PIL import Image  # 导入PIL库中的Image模块,用于图像处理
import torch  # 导入PyTorch库
from torch.utils.data import Dataset  # 从torch.utils.data模块导入Dataset类,用于定义自定义数据集
from torchvision import transforms  # 导入transforms模块,用于数据预处理
import numpy as np  # 导入NumPy库,用于数值处理
import matplotlib.pyplot as plt  # 导入Matplotlib库,用于可视化class CustomDataset(Dataset):def __init__(self, image_dir, label_file, transform=None):super().__init__()  # 调用父类的构造函数self.image_dir = image_dir  # 图像数据的路径self.label_file = label_file  # 标签文本的路径self.transform = transform  # 数据预处理操作self.samples = self._load_samples()  # 加载数据集样本信息def _load_samples(self):samples = []  # 存储样本信息的列表with open(self.label_file, 'r') as f:  # 打开标签文本文件for line in f:  # 逐行读取标签文本文件中的内容image_name, label = line.strip().split(',')  # 根据逗号分隔每行内容,获取图像文件名和标签image_path = os.path.join(self.image_dir, image_name)  # 拼接图像文件的完整路径samples.append((image_path, int(label)))  # 将图像路径和标签组成元组,加入样本列表return samples  # 返回样本列表def __len__(self):return len(self.samples)  # 返回数据集样本的数量def __getitem__(self, index):image_path, label = self.samples[index]  # 获取指定索引处的图像路径和标签image = Image.open(image_path).convert('L')  # 打开图像文件并将其转换为灰度图像if self.transform:  # 如果定义了数据预处理操作image = self.transform(image)  # 对图像进行预处理操作return image, label  # 返回预处理后的图像和标签# 设置图片数据路径和标签文本路径
image_dir = './data/mnist_images'  # 图像数据的路径
label_file = 'labels.txt'  # 标签文本的路径# 定义数据预处理操作,根据需要添加其他预处理操作
transform = transforms.Compose([transforms.Resize((28, 28)),  # 调整图像大小transforms.ToTensor(),  # 将图像转换为张量
])# 创建自定义数据集实例
custom_dataset = CustomDataset(image_dir, label_file, transform=transform)# 创建数据加载器
data_loader = torch.utils.data.DataLoader(custom_dataset, batch_size=1, shuffle=False)# 遍历数据加载器中的每个批次数据
for batch_images, batch_labels in data_loader:# 使用squeeze()函数去除图像张量中的单维度,将图像数据转换为NumPy数组,并存储在变量image中image = batch_images.squeeze().numpy()# 使用imshow()函数显示图像,cmap='gray'指定使用灰度色彩映射plt.imshow(image, cmap='gray')# 设置图像标题,显示图像对应的标签,使用f-string格式化字符串,将batch_labels转换为Python标量并获取其值plt.title(f"Label: {batch_labels.item()}")# 关闭坐标轴显示,即不显示坐标轴plt.axis('off')# 显示图形窗口plt.show()

这段代码实现了加载自定义数据集,并使用 PyTorch 的 DataLoader 将数据加载成批次,然后逐批次地展示图像。

http://www.lryc.cn/news/349342.html

相关文章:

  • 助力数字农林业发展服务香榧智慧种植,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建香榧种植场景下香榧果实检测识别系统
  • 2024 年 4 月区块链游戏研报:市场低迷中活跃用户数创新高
  • 排序(一)----冒泡排序,插入排序
  • springcloud简单了解及上手
  • Halcon与深度学习框架结合进行图像分析
  • STL----push,insert,empalce
  • 解决OpenHarmony设备开发Device Tools工具的QUICK ACCESS一直为空
  • k8s拉起一个pod底层是如何运行的
  • Java代理模式的实现详解
  • 数据结构与算法===优先队列
  • HTML常用标签-超链接标签
  • 财务管理|基于SprinBoot+vue的财务管理系统(源码+数据库+文档)
  • 快速学习SpringAi
  • 谈谈 Spring 的过滤器和拦截器
  • 请介绍下H264的多参考帧技术及其应用场景,并请说明下为什么要有多参考帧?
  • 第6章 Elasticsearch,分布式搜索引擎【仿牛客网社区论坛项目】
  • odoo 全局调整list_controller中默认方法(form_controller和kanban_controller等亦可以同样操作)
  • 大模型日报2024-05-13
  • 【使用Condition来模拟生产消费】
  • 5.14学习总结
  • 最新极空间部署iCloudpd教程,实现自动同步iCloud照片到NAS硬盘
  • Sketch总结
  • 【iOS】工厂模式
  • 目标检测算法YOLOv6简介
  • 如何修复显示器或笔记本电脑屏幕的黄色色调?这里提供几种方法
  • 5.14 力扣每日一题 贪心
  • wordpress 访问文章内容页 notfound
  • 【Python探索之旅】列表
  • 搜维尔科技:深入探讨Varjo XR头显在汽车行业的可能性
  • YOLOv8预测流程-原理解析[目标检测理论篇]