当前位置: 首页 > news >正文

经典卷积模型回顾11—Xception实现图像分类(matlab)

Xception是一种深度卷积神经网络,它采用了分离卷积来实现深度神经网络的高准确性和高效率。Xception的名称来自“extreme inception”,意思是更加极致的Inception网络。

在传统的卷积神经网络中,每个卷积层都有若干个滤波器(即卷积核),每个滤波器在各个通道上进行滑动卷积操作。而在Xception网络中,每个卷积层都被拆分成两个子层:深度卷积和逐点卷积。深度卷积是指每个通道上都有一个滤波器,逐点卷积是指使用类似1x1卷积的方式,对各个通道的特征进行组合。

采用这种设计,Xception可以大幅度减少模型参数数量,从而提高训练速度和测试速度。同时,这种结构还能够有效地避免梯度弥散和梯度爆炸的问题,进一步提高模型的稳定性和泛化能力。

Xception在ImageNet上的表现很出色,是当时最先进的模型之一,同时也是许多图像分类和目标检测竞赛的冠军模型。

Xception是一种卷积神经网络模型,它在Inception模型的基础上,使用了深度可分离卷积层,减少了计算量和参数数量,提高了模型的性能。下面是一个基于MATLAB的Xception图像分类实现示例:

首先,我们需要准备好一个图像分类的数据集,这里以CIFAR-10为例。CIFAR-10是一个包含10个类别的图像数据集,每个类别包含大约6000张$32\times32$的彩色图像。

接下来,我们使用MATLAB的ImageDatastore函数读取数据集:

```matlab
imds = imageDatastore('cifar10', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
```

这里将数据集存储在cifar10文件夹中,并将每个子文件夹的名称作为标签。接下来,我们将数据集分为训练集和测试集:

```matlab
[imdsTrain,imdsTest] = splitEachLabel(imds,0.8,'randomized');
```

这里将80%的数据作为训练集,20%的数据作为测试集。接下来,我们需要创建一个Xception神经网络模型:

```matlab
net = xception();
```

然后,我们可以使用训练好的卷积神经网络模型对图像进行特征提取:

```matlab
featureLayer = 'avg_pool';
trainFeatures = activations(net,imdsTrain,featureLayer,'MiniBatchSize',32);
testFeatures = activations(net,imdsTest,featureLayer,'MiniBatchSize',32);
```

这里使用Xception模型的全局平均池化层作为特征层对图像进行特征提取,使用线性SVM对特征进行分类:

```matlab
svm = fitcecoc(trainFeatures,imdsTrain.Labels);
predictedLabels = predict(svm,testFeatures);
accuracy = mean(predictedLabels == imdsTest.Labels)
```

这里使用fitcecoc函数训练一个多类别分类器,然后对测试集进行预测,并计算分类准确率。

完整的MATLAB代码如下:

```matlab
% Load CIFAR-10 dataset
imds = imageDatastore('cifar10', ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

% Split dataset into training and testing sets
[imdsTrain,imdsTest] = splitEachLabel(imds,0.8,'randomized');

% Load Xception model
net = xception();

% Extract features from training and testing sets
featureLayer = 'avg_pool';
trainFeatures = activations(net,imdsTrain,featureLayer,'MiniBatchSize',32);
testFeatures = activations(net,imdsTest,featureLayer,'MiniBatchSize',32);

% Train SVM classifier
svm = fitcecoc(trainFeatures,imdsTrain.Labels);

% Predict labels for testing set
predictedLabels = predict(svm,testFeatures);

% Calculate accuracy
accuracy = mean(predictedLabels == imdsTest.Labels)
```

该示例代码实现了使用Xception模型对CIFAR-10数据集进行图像分类,并得到了分类准确率。您可以根据自己的需求对代码进行修改和扩展。

http://www.lryc.cn/news/34934.html

相关文章:

  • 移动App性能测试包含哪些内容?App性能测试工具有哪些?
  • AI测试的迷思
  • [ 红队知识库 ] 一些常用bat文件集合
  • Qt广告机服务器(上位机)
  • SOA架构的理解
  • 如何选择一款数据库?
  • week2
  • JavaScript的学习
  • 用gin写简单的crud后端API接口
  • CF大陆斗C战士(三)
  • TTS | 语音合成论文概述
  • HTML第5天 HTML新标签与特性
  • java ee 之进程
  • Linux学习记录——십사 进程控制(1)
  • 使用 create-react-app 脚手架搭建React项目
  • inquirerjs
  • [数据库]内置函数
  • shell基本知识
  • Http长连接和短连接
  • [SQL Statements] 基本的SQL知识 之DDL针对表结构和表空间的基本操作
  • Git版本控制工具(详解)
  • 408考研计算机之计算机组成与设计——知识点及其做题经验篇目2:指令系统
  • Java语法中的方法引用::是个什么鬼?
  • 【使用vue init和vue create的区别以及搭建vue项目的教程】
  • 二、HTTP协议02
  • 免费Api接口汇总(亲测可用,可写项目)
  • 12.并发编程
  • C/C++指针与数组(一)
  • Android使用移动智能终端补充设备标识获取OAID
  • 极目智能与锐算科技达成战略合作,4D毫米波成像雷达助力智能驾驶落地