当前位置: 首页 > news >正文

代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯


文章目录

  • 代码随想录算法训练营Day 38| 动态规划part01 | 理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
  • 理论基础
    • 一、常规题目
    • 二、解题步骤
  • 509. 斐波那契数
    • 一、动态规划v1
    • 二、动态规划v2
    • 三、动态规划v3
  • 70. 爬楼梯
    • 一、动态规划v1
    • 二、动态规划v2
  • 746. 使用最小花费爬楼梯
    • 一、dp v1
    • 二、dp v2


理论基础

一、常规题目

在这里插入图片描述

二、解题步骤

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

题目链接

  1. 确定dp数组以及下标的含义
    dp[i]的定义为:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式
    状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
  3. dp数组如何初始化
    题目中把如何初始化也直接给我们了,如下: dp[0] = 0; dp[1] = 1;
  4. 确定遍历顺序
    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  5. 打印dp数组

一、动态规划v1

class Solution:def fib(self, n):# 排除 Corner Caseif n == 0:return 0# 创建 dp table dp = [0] * (n + 1)# 初始化 dp 数组dp[0] = 0dp[1] = 1# 遍历顺序: 由前向后。因为后面要用到前面的状态for i in range(2, n + 1):# 确定递归公式/状态转移公式dp[i] = dp[i - 1] + dp[i - 2]# 返回答案return dp[n

二、动态规划v2

class Solution:def fib(self, n):if n<=1:return ndp=[0,1]for i in range(2,n+1):total = dp[0]+dp[1]dp[0]=dp[1]dp[1]=total  return total

三、动态规划v3

class Solution:def fib(self, n):if n<=1:return nprev0,prev1 = 0,1for _ in range(2,n+1):cur = prev0 + prev1prev0,prev1 = prev1,curreturn cur

70. 爬楼梯

题目链接

  1. 确定dp数组以及下标的含义
    dp[i]的定义为:爬到第i层楼梯,有dp[i]种方法
  2. 确定递推公式
    dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
    dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么
    状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
  3. dp数组如何初始化
    dp[1] = 1; dp[2] = 2;
  4. 确定遍历顺序
    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  5. 打印dp数组

一、动态规划v1

class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp = [0]*(n+1)if n <=2:return ndp[1]=1dp[2]=2for i in range(3,n+1):dp[i]=dp[i-1]+dp[i-2]return dp[n]

二、动态规划v2

class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""dp=[0,1,2]if n <=2:return nfor i in range(3,n+1):total = dp[1]+dp[2]dp[1]=dp[2]dp[2]=totalreturn total

746. 使用最小花费爬楼梯

题目链接

  1. 确定dp数组以及下标的含义
    dp[i]的定义为:到达第i台阶所花费的最少体力为dp[i]
  2. 确定递推公式
    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]
    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]
    状态转移方程 : dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
  3. dp数组如何初始化
    dp[0] = 0; dp[1] = 0;
  4. 确定遍历顺序
    因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了
  5. 打印dp数组

一、dp v1

class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp = [0] * (len(cost) + 1)dp[0] = 0  # 初始值,表示从起点开始不需要花费体力dp[1] = 0  # 初始值,表示经过第一步不需要花费体力for i in range(2, len(cost) + 1):# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])return dp[len(cost)]  # 返回到达楼顶的最小花费

二、dp v2

class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""dp0=0dp1=0for i in range(2,len(cost)+1):dp2=min(dp1+cost[i-1],dp0+cost[i-2])dp0=dp1dp1=dp2return dp2
http://www.lryc.cn/news/347997.html

相关文章:

  • CSS拟物按钮
  • websevere服务器从零搭建到上线(三)|IO多路复用小总结和服务器的基础框架
  • 解决宝塔Nginx和phpMyAdmin配置端口冲突问题
  • 光伏EPC管理软件都有哪些功能和作用?
  • BGP学习一:关于对等体建立和状态组改变
  • ETL工具kettle(PDI)入门教程,Transform,Mysql->Mysql,Csv->Excel
  • 常见地图坐标系间的转换算法JavaScript实现
  • 基于python的大麦网自动抢票工具的设计与实现
  • 2024年5月树莓集团快讯
  • 网站localhost和127.0.0.1可以访问,本地ip不可访问解决方案
  • Docker Dockerfile如何编写?
  • Python数独游戏
  • 24 | MySQL是怎么保证主备一致的?
  • 2.数据类型与变量(java篇)
  • QT设计模式:桥接模式
  • 简单粗暴的翻译英文pdf
  • UDP和TCP协议比较,TOE技术
  • 第十三节 huggingface的trainner解读与Demo
  • GO: json 处理
  • HarmonyOS开发案例:【生活健康app之实现打卡功能】(2)
  • Mockito框架,帮助创建模拟对象进行测试的利器
  • Spring Boot的工作原理
  • 单点登录和统一身份认证的区别
  • 革新机器人任务规划:TREE-PLANNER引领高效、准确的机器人动作生成新趋势
  • 【数据分析面试】42.用户流失预测模型搭建(资料数据分享)
  • 5.13号模拟前端面试10问
  • 学习使用jQuery将光标移动到textarea的末尾
  • 【送书福利第七期】你好!Java(文末送书)
  • 申贷时,银行级大数据自己能查到吗?
  • 【SVN-TortoiseSVN】SVN 的简介与TortoiseSVN 安装使用教程