当前位置: 首页 > news >正文

用keras识别狗狗

一、需求场景

从照片从识别出狗狗

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')
def recognize_dog(img_path):# 加载图片并调整尺寸为224x224img = image.load_img(img_path, target_size=(224, 224))# 将图片转换为numpy数组x = image.img_to_array(img)# 扩展维度以适应模型的输入要求x = np.expand_dims(x, axis=0)# 预处理图片x = preprocess_input(x)# 使用模型进行预测preds = model.predict(x)# 解码预测结果,得到前3个最可能的类别及其概率results = decode_predictions(preds, top=3)[0]# 检查是否包含"dog"for result in results:print(result)# 测试
print(recognize_dog('e:\\testImage\dog1.jpg'))
print(recognize_dog('e:\\testImage\dog2.jpg'))

"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python39_64\python.exe" E:\PycharmProjects\pythonProject\test20240503-001.py 
2024-05-03 13:09:11.097463: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-05-03 13:09:11.755791: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-05-03 13:09:13.229779: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step
('n02099712', 'Labrador_retriever', 0.755565)
('n02109047', 'Great_Dane', 0.15936635)
('n02099267', 'flat-coated_retriever', 0.059484843)
None
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 78ms/step
('n02113186', 'Cardigan', 0.65025693)
('n02113023', 'Pembroke', 0.34579375)
('n02115641', 'dingo', 0.0023858186)
None

Process finished with exit code 0

 

二、知识点Keras

Keras是一个高级的神经网络框架,它用Python编写,旨在实现快速的实验和原型设计

解释说明

  • Keras是为了简化神经网络的构建和训练过程而设计的,它提供了一种简洁、直观的方式让用户能够轻松地定义和训练深度学习模型。
  • 作为一个高级API,Keras可以运行在多个后端之上,包括TensorFlow、Microsoft CNTK和Theano。这意味着用户可以利用这些后端引擎的强大功能,同时享受Keras提供的简洁和易用性。
  • Keras支持卷积神经网络(CNNs)和循环神经网络(RNNs),这两种网络是深度学习中非常重要的结构,广泛应用于图像识别、语音识别等领域。

使用示例

  • 安装Keras可以通过pip命令进行:pip install keras
  • 一个简单的Keras模型定义和训练的例子可能如下:
from keras.models import Sequential
from keras.layers import Densemodel = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.fit(x_train, y_train, epochs=5, batch_size=32)

        Keras是一个强大的工具,特别适合那些希望快速开发和实验深度学习模型的用户。它的设计理念是简化复杂性,使得初学者和非专家也能够轻松上手深度学习项目。

三、知识点ImageNet

        ImageNet是一个用于计算机视觉识别项目的庞大数据库,它对图像识别和机器视觉领域的研究起到了重要作用。

        解释说明

  • ImageNet由美国斯坦福大学的计算机科学家创建,旨在模拟人类的视觉识别系统,以识别和分类图片中的物体。
  • 它是目前世界上最大的图像识别数据库之一,包含超过1400万张手动注释的图像,涵盖了2万多个类别。
  • 数据集是根据WordNet的层次结构组织起来的,每个节点或类别都包含了一系列相关的图像。
  • 在至少一百万个图像中,除了标注了物体类别,还提供了边界框信息,这对于目标检测任务尤其重要。

        ImageNet作为一个计算机视觉领域的重要资源,为图像识别和机器学习提供了宝贵的数据支持。正确使用ImageNet可以显著提升图像识别模型的性能,但同时也要注意合理使用和遵守相关规定。

 

机器之魂,人工智能,无所不能,充满神奇。

 

http://www.lryc.cn/news/345131.html

相关文章:

  • Sass语法介绍-变量介绍
  • 可调恒流电子负载的基础认识
  • 开源模型应用落地-模型记忆增强-概念篇(一)
  • SAPUI5基础知识1 - 概览,库,支持工具,自学教程
  • 常见的获取dom元素的方法
  • 走进CHEN MEI HUA的设计哲学:书写东方女性力量与态度的时尚篇章
  • ESrally单机向量检索性能测试全流程
  • 小红书释放被封手机号 无限注册
  • Docker快速启动清单
  • 京东手势验证码-YOLO姿态识别+Bézier curve轨迹拟合
  • 亚马逊是如何铺设多个IP账号实现销量大卖的?
  • linux学习笔记——硬盘原理以及linux中的sector与block
  • 【OceanBase诊断调优】—— 磁盘性能问题导致卡合并和磁盘写入拒绝排查
  • 使用unreal engine5.3.2创建c++第一人称游戏
  • 关系型数据库的一种自动测评方式
  • 速盾:服务器cdn加速的具体实现方式?
  • 【QT教程】QT6音视频处理权威指南 QT音视频
  • cmd输入mysql -u root -p无法启动
  • word 毕业论文格式调整
  • 移动UI瓷片区能有多漂亮?要多漂亮就多漂亮。
  • SpringCloud Config 分布式配置中心
  • Java入门基础学习笔记2——JDK的选择下载安装
  • 基于FPGA的去雾算法
  • 专题六_模拟(2)
  • [qnx] 通过zcu104 SD卡更新qnx镜像的步骤
  • 论文AIGC检测让毕业生头疼,如何有效降低AI查重率!
  • FineBI学习:K线图
  • Chronos:学习时间序列的大语言模型(代码解析)
  • 云南区块链商户平台优化开发
  • 深圳六西格玛培训:引领职场“薪”途无限