当前位置: 首页 > news >正文

LSTM递归预测(matlab)

LSTM(长短期记忆)递归预测原理及步骤详解如下:

LSTM递归预测(matlab)代码获取戳此处代码获取戳此处代码获取戳此处

一、LSTM递归预测原理

LSTM是一种特殊的递归神经网络(RNN),它能够学习长期依赖关系。传统的RNN在处理长序列时存在梯度消失和梯度爆炸的问题,导致无法有效捕捉长期依赖。LSTM通过引入“门”机制解决了这一问题,使得信息可以在网络中长时间传递而不会被遗忘。

LSTM的核心是LSTM细胞,它包含了三个门:遗忘门、输入门和输出门,以及一个记忆单元。这些门的作用如下:

  1. 遗忘门:决定从记忆单元中丢弃哪些信息。
  2. 输入门:决定哪些新的信息应该被存储在记忆单元中。
  3. 输出门:基于记忆单元的状态来决定当前LSTM细胞的输出。

在轨迹预测中,LSTM网络被训练为一个端到端的模型。当输入轨迹序列时,LSTM网络会自动学习前面的事件对后续事件的影响,并尝试预测未来的位置或状态。对于每个输入序列,LSTM都会生成一个预测输出,这个预测输出是从LSTM的输出门中获得的。

二、LSTM递归预测步骤

  1. 数据准备:

    • 收集时间序列数据:根据预测任务的需求,收集相关的时间序列数据。
    • 数据清洗:对收集到的数据进行预处理,包括去除噪声、缺失值填充等。
    • 数据划分:将数据集划分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整超参数,测试集用于评估模型的性能。
  2. 构建LSTM模型:

    • 确定模型结构:包括LSTM层的层数、隐藏单元数等。
    • 初始化模型参数:包括权重和偏置项等。
    • 选择损失函数和优化器:根据任务需求选择合适的损失函数和优化器。
  3. 训练模型:

    • 将训练集输入到LSTM模型中,计算模型的输出和损失函数值。
    • 通过反向传播算法计算梯度,并使用优化器更新模型参数。
    • 重复上述步骤,直到模型在验证集上的性能达到预设的阈值或达到最大迭代次数。
  4. 验证模型:

    • 将验证集输入到训练好的LSTM模型中,计算模型的预测结果和性能指标(如准确率、召回率等)。
    • 根据验证结果调整模型结构或超参数,以获得更好的性能。
  5. 预测未来数据:

    • 将测试集或新的时间序列数据输入到训练好的LSTM模型中,进行预测。
    • 对预测结果进行后处理和分析,以提取有用的信息或做出决策。
  6. 可视化结果(可选):

    • 将预测结果以图表或其他可视化形式展示,以便更直观地了解预测结果和性能。
  7. 部分代码
  8. % 训练集和测试集划分
    outdim = 1;                                  % 最后一列为输出
    num_size = 0.95;                              % 训练集占数据集比例
    num_train_s = round(num_size * num_samples); % 训练集样本个数
    f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
    T_train = res(1: num_train_s, f_ + 1: end)';
    M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
    T_test = res(num_train_s + 1: end, f_ + 1: end)';
    N = size(P_test, 2);%  数据归一化
    [p_train, ps_input] = mapminmax(P_train, 0, 1);
    p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
    t_test = mapminmax('apply', T_test, ps_output);%  格式转换
    for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
    endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
    end%  创建LSTM网络,
    layers = [ ...sequenceInputLayer(f_)              % 输入层lstmLayer(55)                      reluLayer                           fullyConnectedLayer(outdim)         % 回归层regressionLayer];

    所采用数据集:

  9. 效果图

http://www.lryc.cn/news/342514.html

相关文章:

  • 计算机网络 备查
  • 查看软件包依赖关系
  • C++ 中 strcmp(a,b) 函数的用法
  • Servlet(一些实战小示例)
  • 【JVM】垃圾回收机制(Garbage Collection)
  • C++中的priority_queue模拟实现
  • 【Kafka】1.Kafka核心概念、应用场景、常见问题及异常
  • LTE的EARFCN和band之间的对应关系
  • 解决问题:Docker证书到期(Error grabbing logs: rpc error: code = Unknown)导致无法查看日志
  • 【C语言】预处理器
  • QtConcurrent::run操作界面ui的注意事项(2)
  • 黑马程序员HarmonyOS4+NEXT星河版入门到企业级实战教程笔记
  • 嵌入式全栈开发学习笔记---C语言笔试复习大全13(编程题9~16)
  • https网站安全证书的作用与免费申请办法
  • 自动化测试再升级,大模型与软件测试相结合
  • centos7 基础命令
  • 【设计模式】之单例模式
  • 3d模型实体显示有隐藏黑线?---模大狮模型网
  • 共享购:全新消费模式的探索与实践
  • Java集合 总结篇(全)
  • Dubbo分层架构深度解析
  • LocalDate 数据库不兼容问题,因为LocalDate 是 long 类型的
  • RVM(相关向量机)、CNN_RVM(卷积神经网络结合相关向量机)、RVM-Adaboost(相关向量机结合Adaboost)
  • Java--方法的使用
  • linux - 主次设备号自动申请
  • 我写了一套几乎无敌的参数校验组件!基于 SpEL 的参数校验组件「SpEL Validator」
  • 输入序列太长 gan CGAN
  • uni-app scroll-view隐藏滚动条的小细节 兼容主流浏览器
  • Java常用API之LinkedList类解读
  • 移动端自适应