当前位置: 首页 > news >正文

二叉树的遍历(前序、中序、后序)| C语言

目录

0.写在前面

1.前序遍历

步骤详解

代码实现

2.中序遍历

步骤详解

代码实现 

3.后序遍历

步骤详解

代码实现


0.写在前面

认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,且每个节点只访问一次。

二叉树遍历的规则一般有四种:前序遍历、中序遍历、后序遍历和层序遍历。其中,前三种较为简单且实现方式大同小异。

        1.前序遍历:先访问根节点,再遍历左右子树;

        2.中序遍历:先遍历左子树,再访问根节点,再遍历右子树;

        3.后序遍历:先遍历左子树,再遍历右子树,再访问根节点。

简单记忆:前(根,左,右)、中(左,根,右)、后(左,右,根)。

在遍历二叉树之前,首先得拥有一棵二叉树。因为目前还没有学习如何构建二叉树,所以此处我们用最原始的办法——申请N个节点,将它们手动拼接为二叉树。

typedef int BTDataType;//二叉树节点的结构
typedef struct BTNode
{BTDataType data;struct BTNode* left;struct BTNode* right;
}BTNode;//定义一个申请新节点的函数
BTNode* BuyBTNode(BTDataType data)
{BTNode* newNode = (BTNode*)malloc(sizeof(BTNode));if (newNode == NULL){perror("malloc fail");exit(-1);}newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return 0;
}

1.前序遍历

前序遍历:先访问根节点,再访问左子树,再访问右子树;

void PrevOrder (BTNode* root)

为了更好的理解前序遍历的规则,接下来展示一下详细步骤。

步骤详解

1.先访问根节点 (data = 1),再访问左子树; 

2.再访问左子树的根节点(data =  2),再访问左子树的左子树;

3.依旧先访问根节点(data = 3),此时 n3 节点的左右子树都为 NULL ,则不再往下递归,回到上一层;接着访问上一层的右子树;

4.因为 n2 节点的右子树为 NULL,所以继续返回上一层;访问上一层的右子树;

5.访问右子树的根节点(data = 4),再访问右子树的左子树;先左子树的根节点(data = 5),n5 节点的左右子树都为 NULL,返回上一层访问右子树(data = 6),同样 n6 节点的左右子树都为 NULL,返回上一层。

至此每个节点都访问完毕,总体的访问顺序是这样的:

按照访问顺序打印的结果应该是(空节点用 NULL 表示):

1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

代码实现

按照前序遍历的逻辑,前序遍历的实现肯定是离不开递归。

void PrevOrder(BTNode* root)
{if (root == NULL){ printf("NULL ");//空节点用 NULL 表示return; }printf("%d ", root->data);//前序在前PrevOrder(root->left);PrevOrder(root->right);
}

(凑合着看,有点丑陋hhhhh) 

运行程序,看结果是否与之前推理的结果一致:

int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;PrevOrder(n1);return 0;
}
//推理结果
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL 

2.中序遍历

前中后序三种遍历大同小异,实现代码也几乎相同。

void InOrder(BTNode* root)

步骤详解

代码实现 

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PrevOrder(root->left);printf("%d ", root->data);//中序在中PrevOrder(root->right);
}
//推理结果
NULL 3 NULL 2 NULL 1 NULL 5 NULL 4 NULL 6 NULL

3.后序遍历

步骤详解

参考1、2。

代码实现

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);//后序在后
}

http://www.lryc.cn/news/34226.html

相关文章:

  • 【建议收藏】深入浅出Yolo目标检测算法(含Python实现源码)
  • Vue常见的事件修饰符
  • 【卷积神经网络】激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / GeLU
  • 刷题记录:牛客NC24048[USACO 2017 Jan P]Promotion Counting 求子树的逆序对个数
  • MpAndroidChart3最强实践攻略
  • Spring笔记(9):事务管理ACID
  • io流 知识点+代码实例
  • 【MySQL】P8 多表查询(2) - 连接查询 联合查询
  • QML动画(Animator)
  • Git 分支操作【解决分支冲突问题】
  • 盘点全球10大女性技术先驱
  • C++之dynamic_cast
  • JavaScript 箭头函数、函数参数
  • JavaScript_Object.keys() Object.values()
  • 扬帆优配|高送转+高分红+高增长潜力股揭秘
  • 基于transformer的多帧自监督深度估计 Multi-Frame Self-Supervised Depth with Transformers
  • 设计模式: 单例模式
  • idea编辑XML文件出现:Tag name expected报错
  • 第十三届蓝桥杯省赛C++ A组 爬树的甲壳虫(简单概率DP)
  • 手动集成Tencent SDK遇到的坑!!!
  • 三天吃透mybatis面试八股文
  • SpringBoot整合Quartz以及异步调用
  • Golang 中 Slice的分析与使用(含源码)
  • 瀑布开发与敏捷开发的区别,以及从瀑布转型敏捷项目管理的5大注意事项
  • “华为杯”研究生数学建模竞赛2007年-【华为杯】A题:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题(附获奖论文)
  • 基于JavaWeb学生选课系统开发与设计(附源码资料)
  • centos7 oracle19c安装||新建用户|| ORA-01012: not logged on
  • 【算法设计-分治】递归与尾递归
  • HTML 编辑器
  • css盒模型详解