当前位置: 首页 > news >正文

Qwen1.5大语言模型微调实践

在人工智能领域,大语言模型(Large Language Model,LLM)的兴起和广泛应用,为自然语言处理(NLP)带来了前所未有的变革。Qwen1.5大语言模型作为其中的佼佼者,不仅拥有强大的语言生成和理解能力,而且能够通过微调(fine-tuning)来适应各种特定场景和任务。本文将带领大家深入实战,探索如何对Qwen大语言模型进行微调,以满足实际应用的需求。

一、了解Qwen1.5大语言模型

Qwen1.5模型是Qwen的升级版,也是Qwen2的测试版。它与Qwen类似,是只有一个decoder解码器的 transformer 模型,具有SwiGLU激活、RoPE、multi-head attention多头注意力。

  • Qwen1.5有7个模型尺寸:0.5B, 1.8B, 4B, 7B, 14B, 72B 模型,还外加 14B (A2.7B) MoE 模型。
  • chat 聊天模型的质量得到明显提高
  • 在 base 模型和 chat 模型支持多语言的能力(中文,英文等)
  • 支持 32768 tokens 的上下文长度
  • 所有模型启用System prompts,可以进行角色扮演
  • 不再需要 trust_remote_code

二、微调GPU资源评估和环境准备

这里我使用 Llama-Factory 训练框架来对 Qwen1.5 来进行微调,微调的方法可以使用 LoRA 或 QLoRA,可以大大节省GPU资源。具体的 Llama-Factory 环境搭建方法可以看官方链接:https://github.com/hiyouga/LLaMA-Factory

三、准备微调数据集和预训练模型

(1)数据集准备

微调数据集是微调过程中的关键。我们需要根据具体任务的需求,收集并整理相关的数据。这些数据应该包含输入和对应的输出,以便模型在训练过程中学习如何从输入中生成期望的输出。这里我使用一些公开的数据集来进行微调。

  • Alpaca GPT4 (en&zh)
  • Stanford Alpaca (en)
  • Stanford Alpaca (zh)
  • Self Cognition (zh)

更多的数据集请看链接:GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs

(2)Pre-training 模型准备

直接在 huggingface 下载,下载地址:Qwen

如果自己网络无法访问 huggingface ,也可以使用 HF-Mirror - Huggingface 镜像站 来进行下载也可以。

四、模型微调训练

(1)运行打开web ui 界面
按照 LLaMA-Factory 里面的教程搭建好环境之后就可以开始对模型进行微调了,执行以下命令来启动web ui 界面来进行微调:
cd LLaMA-Factoryexport CUDA_VISIBLE_DEVICES=0  # use gpu0
python src/train_web.py        # or python -m llmtuner.webui.interface

如果想修改 网页服务的地址和端口号,直接在 src/train_web.py 修改就可以了。这里也可以代码中的 share 设置为True ,就可以把本地网络的web ui 界面作为一个 public 链接分享出去。

from llmtuner import create_uidef main():create_ui().queue().launch(server_name="127.0.0.1", server_port=6006, share=True, inbrowser=True)if __name__ == "__main__":main()

(2)配置训练参数

然后根据的要求来进行配置,我的配置如下:

模型名称: Qwen1.5-7B-Chat

模型路径:填写自己本地下载的模型的路径,或者 Hugging Face 路径

微调方法:可以选用 lora, freeze, full 等

量化等级:选择 none,不进行量化,也可以启用 4/8 bit 模型量化(即 QLoRA)

提示模板:qwen

训练阶段:Supervised Fine-Tuning,也可以选 Reward Modeling, PPO, DPO, Pre-training等

数据路径:数据所在文件夹,默认为项目中的 data 文件夹

数据集:提取了 data 文件夹中的 *.json 文件,可直接选择。选择完成之后点一下“预览数据集”确认自己的数据是否正确。

其他的参数比如 学习率、训练轮数(epoch)、批处理大小、学习率调节器 等都是深度学习训练常见的参数,可以根据自己的情况选择就好。这里我使用默认的参数。

LoRA 参数设置中,可以修改 lora 秩的大小,缩放系数,权重随机丢弃的概率等参数,这里我保持默认。

所有的参数都配置好之后,点一下“预览命令”,确认命令没有问题之后,就可以点击“开始”进行训练了。训练的过程中可以看到 loss的变化曲线、训练耗时等。

五、模型微调效果测试

微调完成后,我们需要对微调后的模型进行评估,以了解其在实际任务中的性能表现。也可以在web ui 界面直接进行对话体验。

“模型路径”中输入原始模型路径,然后在“适配器路径”中选择自己微调得到的 adapter 路径,然后点击“加载模型”,就可以开始对话聊天了。

通过终端窗口,可以看到模型成功加载

对话聊天:


参考:

1. GitHub - hiyouga/LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs

2.  GitHub - QwenLM/Qwen1.5: Qwen1.5 is the improved version of Qwen, the large language model series developed by Qwen team, Alibaba Cloud.

3.  快速上手!LLaMa-Factory最新微调实践,轻松实现专属大模型-CSDN博客

http://www.lryc.cn/news/341144.html

相关文章:

  • 购物车实现
  • HTML5漫画风格个人介绍源码
  • 工业数学模型——高炉煤气发生量预测(三)
  • pnpm - Failed to resolve loader: cache-loader. You may need to install it.
  • CSS transition和animation的用法和区别
  • 书籍推荐(附上每本书的看点)
  • LLM理解v1
  • ubuntu 22.04 -- cmake安装
  • 字符串算法题(第二十四天)
  • 【Linux】应用层协议序列化和反序列化
  • 使用Canal同步MySQL 8到ES中小白配置教程
  • 关于部署ELK和EFLK的相关知识
  • 实验室信息系统源码 saas模式java+.Net Core版开发的云LIS系统全套源码可二次开发有演示
  • PCB---Design Entry cis 绘图 导出
  • vue 一键更换主题颜色
  • WebKit内核游览器
  • Qt 拖放功能详解:理论与实践并举的深度指南
  • Springboot+Vue项目-基于Java+MySQL的企业客户管理系统(附源码+演示视频+LW)
  • 【Linux学习】Linux指令(四)
  • 阿里云服务器 使用Certbot申请免费 HTTPS 证书及自动续期
  • 统一SQL-number/decimal/dec/numeric转换
  • 软件测试入门学习笔记
  • 31. 下一个排列
  • Android笔记: mkdirs不生效失败
  • 需要添加的硬币的最小数量(Lc2952)——贪心+构造
  • 军工保密资质介绍及申请要求
  • ES6的编程风格
  • springboot 载入自定义的yml文件转DTO
  • webpack-(plugin,本地服务器,路径别名,安装vue)
  • http请求头导致了dial tcp:lookup xxxx on 10.43.0.10:53 no sunch host