当前位置: 首页 > news >正文

大数据:【学习笔记系列】Flink基础架构

Apache Flink 是一个开源的流处理框架,用于处理有界无界数据流。Flink 设计用于运行在所有常见的集群环境中,并且能够以高性能可扩展的方式进行实时数据处理和分析。下面将详细介绍 Flink 的基础架构组件和其工作原理。

1. Flink 架构概览

Flink 的架构主要包括以下几个核心组件:

  • JobManager (Master Node)
  • TaskManager (Worker Nodes)
  • Dispatcher and Resource Manager
  • Client
JobManager

JobManager 是 Flink 集群的核心节点,负责整个数据处理流程的管理协调。JobManager 的主要职责包括:

  • 作业调度:负责接受作业提交,解析和优化执行计划,然后将作业分解为任务并分配给 TaskManagers
  • 资源管理:决定作业的任务如何在 TaskManagers 上分配执行。
  • 故障恢复:管理检查点(Checkpoints),在任务执行失败时恢复作业状态。
  • 任务协调:协调 TaskManagers 之间的通信,如数据分发任务同步
TaskManager

TaskManager 是执行具体任务的节点,一个 Flink 集群可以有多个 TaskManager 节点。TaskManager 的主要功能是:

  • 任务执行:每个 TaskManager 可以并行执行多个任务,具体数量取决于其配置的 slot 数量。
  • 状态管理:管理本地的数据缓存任务的状态,参与状态的快照以实现故障恢复
  • 数据交换:处理节点间的数据传输
Dispatcher

Dispatcher 组件负责接收客户端的作业提交请求,并启动一个新的 JobMaster 实例来负责作业的执行。Dispatcher 提供了一个 REST 接口用于作业提交状态查询

Resource Manager

Resource Manager 负责管理 TaskManagers 的资源,例如分配回收。在 Flink 集群运行于容器化环境(如 Kubernetes)时,Resource Manager 也会与外部的资源管理系统交互,进行资源的动态调整

Client

Client 是用户与 Flink 集群交互的界面,用于提交作业、查询作业状态等。客户端通过向 Dispatcher 或 JobManager 提交作业描述(如 JAR 文件),启动作业的执行。

2. 数据处理流程

在 Flink 中,数据处理的流程通常包括以下几个步骤:

  1. 作业提交:用户通过Client提交作业到 Dispatcher,Dispatcher 创建作业的 JobGraph,并将其提交到 JobManager
  2. 作业调度:JobManager 将 JobGraph 转换为一个可执行的物理计划——ExecutionGraph,并决定如何在 TaskManagers 上分布这些任务。
  3. 任务执行:JobManager 将具体的任务分配给 TaskManager 的空闲 slots,TaskManagers 根据指令执行任务。
  4. 状态管理与故障恢复:在执行过程中,TaskManagers 定期向 JobManager 报告状态,JobManager 根据需要进行任务的重启状态回滚
  5. 结果输出:处理结果可以输出外部系统,如数据库、文件系统或其他存储系统。

3. 容错机制

Flink 的容错机制基于状态的一致性快照(checkpointing)。通过定期创建全局一致性的状态快照,当某个部分发生故障时,Flink 可以从最近的快照恢复整个作业的状态,继续执行,确保数据处理的精确一致性。

总结

Flink 的基础架构设计使其能够高效处理大规模数据流,支持复杂的数据处理任务和流式计算,同时提供高度的可扩展性和可靠性。通过其强大的容错机制,Flink 能够保证在发生故障时数据不丢失,处理不中断。这些特点使得 Flink 成为处理实时数据流的理想选择。

http://www.lryc.cn/news/340998.html

相关文章:

  • Debezium系列之:部署Debezium采集Oracle数据库的详细步骤
  • C语言通过键盘输入给结构体内嵌的结构体赋值——指针法
  • AWS Key disabler:AWS IAM用户访问密钥安全保护工具
  • 【第1节】书生·浦语大模型全链路开源开放体系
  • 代码随想录-链表 | 707设计链表
  • AIGC算法1:Layer normalization
  • 【C语言】——字符串函数的使用与模拟实现(下)
  • mac安装nvm详细教程
  • 上线流程及操作
  • MobX入门指南:快速上手状态管理库
  • 技术洞察:Selenium WebDriver中Chrome, Edge, 和IE配置的关键区别
  • 使用自定义OCR提升UIE-X检测效果:结合PaddleOCR和UIE模型进行文档信息提取
  • 题目:写一个函数,求一个字符串的长度,在main函数中输入字符串,并输出其长度。
  • .net反射(Reflection)
  • P1278 单词游戏 简单搜索+玄学优化
  • 软考 - 系统架构设计师 - 数据架构真题
  • Ubuntu22.04下opencv4.9.0环境的搭建
  • Flask如何在后端实时处理视频帧在前端展示
  • 04-15 周一 GitHub仓库CI服务器actions-runner和workflow yaml配置文档解析
  • 论文笔记:SmartPlay : A Benchmark for LLMs as Intelligent Agents
  • 搜维尔科技:【工业仿真】煤矿安全知识基础学习VR系统
  • 线程和进程的区别(面试)
  • 抓取电商产品数据的方法|电商平台商品详情数据|批量上架|商品搬家|电商封装API数据采集接口更高效安全的数据采集
  • 关联规则Apriori算法
  • 书生·浦语大模型全链路开源体系-第4课
  • HTML优化SEO
  • RabbitMQ-交换机
  • mapreduce中的MapTask工作机制(Hadoop)
  • 景区文旅剧本杀小程序亲子公园寻宝闯关系统开发搭建
  • 性能优化---webpack优化