当前位置: 首页 > news >正文

【动态规划 区间dp 位运算】100259. 划分数组得到最小的值之和

本文涉及知识点

动态规划 区间dp 位运算

LeetCode100259. 划分数组得到最小的值之和

给你两个数组 nums 和 andValues,长度分别为 n 和 m。
数组的 值 等于该数组的 最后一个 元素。
你需要将 nums 划分为 m 个 不相交的连续 子数组,对于第 ith 个子数组 [li, ri],子数组元素的按位AND运算结果等于 andValues[i],换句话说,对所有的 1 <= i <= m,nums[li] & nums[li + 1] & … & nums[ri] == andValues[i] ,其中 & 表示按位AND运算符。
返回将 nums 划分为 m 个子数组所能得到的可能的 最小 子数组 值 之和。如果无法完成这样的划分,则返回 -1 。
示例 1:
输入: nums = [1,4,3,3,2], andValues = [0,3,3,2]
输出: 12
解释:
唯一可能的划分方法为:
[1,4] 因为 1 & 4 == 0
[3] 因为单元素子数组的按位 AND 结果就是该元素本身
[3] 因为单元素子数组的按位 AND 结果就是该元素本身
[2] 因为单元素子数组的按位 AND 结果就是该元素本身
这些子数组的值之和为 4 + 3 + 3 + 2 = 12
示例 2:

输入: nums = [2,3,5,7,7,7,5], andValues = [0,7,5]

输出: 17

解释:

划分 nums 的三种方式为:

[[2,3,5],[7,7,7],[5]] 其中子数组的值之和为 5 + 7 + 5 = 17
[[2,3,5,7],[7,7],[5]] 其中子数组的值之和为 7 + 7 + 5 = 19
[[2,3,5,7,7],[7],[5]] 其中子数组的值之和为 7 + 7 + 5 = 19
子数组值之和的最小可能值为 17

示例 3:

输入: nums = [1,2,3,4], andValues = [2]

输出: -1

解释:

整个数组 nums 的按位 AND 结果为 0。由于无法将 nums 划分为单个子数组使得元素的按位 AND 结果为 2,因此返回 -1。
提示:
1 <= n == nums.length <= 104
1 <= m == andValues.length <= min(n, 10)
1 <= nums[i] < 105
0 <= andValues[j] < 105

动态规划的位运算

f(i,j) = & = x : i j \Large\And=_{x:i}^j &=x:ij
vNext[cur] 记录符合以下条件之一的next:
一,next-1 < cur。
二,f(i,next) ≠ \neq = f(i,next-1)。
iBitCnt = log(max(nums[i]) ≈ \approx 22 ,显然next的数量不会超过iBitCnt。
如果f(i,j)发生变化,至少一个二进制1变成0。

动态规划

动态规划的状态表示

dp[len][cur] 表示将nums[0…cur]划分为len个区间的最小和。
空间复杂度:O(nm)

动态规划的转移方程

r个区间向r+1个区间转移时:
如果f(cur,next) 等于 andValues[r-1]则:
MinSelf(dp[r+1][x],dp[r][cur-1]+nums[x]) x ∈ [ n e x t , n e x t 的下一个值 ) 这样值设置的时间复杂度是: \in[next,next的下一个值) 这样值设置的时间复杂度是: [next,next的下一个值)这样值设置的时间复杂度是: O ( m × n × i B i t C n t × n ) O(m \times n \times iBitCnt \times n ) O(m×n×iBitCnt×n) ,超时了。
只更新:x = next,其它的用二种方式更新:
如果 (nums[cur]& andValues[r-1]) = andValues[r-1]
则MinSelf(dp[r][cur],dp[r][cur-1])
时间复杂度:$ O ( m × n × i B i t C n t ) O(m \times n \times iBitCnt ) O(m×n×iBitCnt)

动态规划的初始值

枚举第一个区间

动态规范的返回值

dp.back().back()

动态规划的填表顺序

len 从1到m_r-1。
cur从1到m_c-1

代码

核心代码

template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{*seft = min(*seft,(ELE) other);
}template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{*seft = max(*seft, other);
}class Solution {
public:int minimumValueSum(vector<int>& nums, vector<int>& andValues) {const int iBitCnt = 22;m_r = andValues.size();m_c = nums.size();const int iMax = (1 << iBitCnt) - 1;vector<vector<int>> dp(m_r+1,vector<int>(m_c, m_iNotMay));int iAnd = iMax;for (int i = 0; i < m_c; i++) {iAnd &= nums[i];if (iAnd == andValues[0]) {dp[1][i] = nums[i];}}vector<set<int>> vNext(m_c);{vector<int> next(iBitCnt, m_c);for (int i = nums.size() - 1; i >= 0; i--) {vNext[i] = set<int>(next.begin(), next.end());vNext[i].emplace(i);vNext[i].erase(m_c);for (int bit = 0; bit < iBitCnt; bit++){bool b = (1 << bit) & nums[i];if (!b) {next[bit] = i;}}}}for (int r = 1; r < m_r; r++){for (int cur = 1; cur < m_c; cur++){int iAdd = iMax;for (const auto& next : vNext[cur]) {iAdd &= nums[next];if (andValues[r] == iAdd) {MinSelf(&dp[r + 1][next], dp[r][cur - 1] + nums[next]);}}if ((andValues[r - 1] & nums[cur]) == andValues[r - 1]) {MinSelf(&dp[r][cur], dp[r][cur - 1]+nums[cur]-nums[cur-1]);}				}			}{int r = m_r;for (int cur = 1; cur < m_c; cur++){				if ((andValues[r - 1] & nums[cur]) == andValues[r - 1]) {MinSelf(&dp[r][cur], dp[r][cur - 1] + nums[cur] - nums[cur - 1]);}}}const int iRet = dp.back().back();return (iRet >= 1'000'000) ? -1 : iRet;}int m_r,m_c;const int m_iNotMay = 1'000'000'000;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int>  nums, andValues;int k;{Solution sln;nums = { 1, 9, 8, 8 }, andValues = { 1,8 };auto res = sln.minimumValueSum(nums, andValues);Assert(9, res);}{Solution sln;nums = { 1, 3, 2, 4, 7, 5, 3 }, andValues = { 0, 5, 3 };auto res = sln.minimumValueSum(nums, andValues);Assert(12, res);}{Solution sln;nums = { 1, 4, 3, 3, 2 }, andValues = { 0, 3, 3, 2 };auto res = sln.minimumValueSum(nums, andValues);Assert(12, res);}//vector<int>  nums = { 3,6,9 };//int k;////{//	Solution sln;//	nums = { 3,6,9 }, k = 3;//	auto res = sln.findKthSmallest(nums, k);//	Assert(9LL, res);//}}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

http://www.lryc.cn/news/338396.html

相关文章:

  • CSS核心样式-02-盒模型属性及扩展应用
  • 在 Google Cloud 上轻松部署开放大语言模型
  • 005Node.js模块URL的使用
  • 美团笔试复盘
  • IntelliJ IDEA - Since Maven 3.8.1 http repositories are blocked
  • Django的APP应用更名(重命名)流程
  • ChatGLM3-6B大语言模型离线执行
  • 了解大语言模型的参数高效微调(Parameter-Effcient Fine-Tuning)
  • 2024.4.14力扣每日一题——设计哈希集合
  • SQL explain 显示子查询A类型为ALL怎么优化
  • 网络协议学习——IP协议
  • MATLAB初学者入门(1)—— 基础知识和功能介绍
  • React Css 四种引入方式
  • 题目:输入3个数a,b,c,按大小顺序输出。
  • AI预测体彩排3第3弹【2024年4月14日预测--第1套算法开始计算第3次测试】
  • Android 在xml 布局中如何嵌套 Jetpack Compose
  • Spring Boot统一功能处理(一)
  • 我与C++的爱恋:类与对象(二)
  • BERT入门:理解自然语言处理中的基本概念
  • Discoverydevice.java和activity_discoverydevice.xml
  • 华为OD机试 - 最多颜色的车辆(Java JS Python C C++)
  • 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
  • NzN的C++之路--构造函数与析构函数
  • 【算法刷题day24】Leetcode:216. 组合总和 III、17. 电话号码的字母组合
  • 一体化泵站的生产制造流程怎样
  • 【1】C++设计模式之【单例模式】
  • 软件设计模式之解释器模式
  • java Web课程管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc
  • Electron 桌面端应用的使用 ---前端开发
  • 【SpringBoot:详解Bean装配】