当前位置: 首页 > news >正文

【机器学习】一文掌握机器学习十大分类算法(上)。

十大分类算法

  • 1、引言
  • 2、分类算法总结
    • 2.1 逻辑回归
      • 2.1.1 核心原理
      • 2.1.2 算法公式
      • 2.1.3 代码实例
    • 2.2 决策树
      • 2.2.1 核心原理
      • 2.2. 代码实例
    • 2.3 随机森林
      • 2.3.1 核心原理
      • 2.3.2 代码实例
    • 2.4 支持向量机
      • 2.4.1 核心原理
      • 2.4.2 算法公式
      • 2.4.3 代码实例
    • 2.5 朴素贝叶斯
      • 2.5.1 核心原理
      • 2.5.2 算法公式
      • 2.5.3 代码实例
  • 3、总结

1、引言

小屌丝:鱼哥,分类算法都有哪些?
小鱼:也就那几种了
小屌丝:哪几种啊?
小鱼:逻辑归回、决策树、随机森林、支持向量机…你问这个干嘛
小屌丝:我想捋一捋,哪些是分类算法
小鱼:我在【机器学习&深度学习】专栏已经写过了啊
小屌丝:那不是一篇只能学习一个技能嘛
小鱼:那你想咋的?
小屌丝:我想一篇学习多个技能。
小鱼:我… 的乖乖, 你真是个…~~
在这里插入图片描述

小屌丝: 别这么夸,我会不好意思的
小鱼:… 算了,我还是整理一下思路,写文章吧
小屌丝:可以可以。

2、分类算法总结

2.1 逻辑回归

2.1.1 核心原理

逻辑回归是用于二分类问题的统计方法,它通过将数据输入的线性组合通过逻辑函数(通常是Sigmoid函数)映射到0和1之间,从而预测概率。

2.1.2 算法公式

逻辑回归的核心公式为 P ( Y = 1 ) = 1 1 + e − ( β 0 + β 1 X 1 + . . . + β n X n ) P(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1X_1 + ... + \beta_nX_n)}} P(Y=1)=1+e(β0+β1X1+...+βnXn)1
其中 P ( Y = 1 ) P(Y=1) P(Y=1)是给定X时Y=1的概率。

敲黑板

详细内容可以参照小鱼的专篇:

  • 【机器学习】有监督学习算法之:逻辑回归
  • 【机器学习】一文掌握逻辑回归全部核心点(上)。
  • 【机器学习】一文掌握逻辑回归全部核心点(下)。

2.1.3 代码实例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-03
# @Author : Carl_DJfrom sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建逻辑回归模型并训练
model = LogisticRegression(max_iter=200)
model.fit(X_train, y_train)# 进行预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

2.2 决策树

2.2.1 核心原理

决策树通过递归地选择最优特征,并根据该特征的不同取值对数据进行分割,每个分割为一个树的分支,直到满足停止条件。

敲黑板

详细内容可以参照小鱼的专篇:

  • 【机器学习】监督学习算法之:决策树

2.2. 代码实例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-03
# @Author : Carl_DJfrom sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建决策树模型并训练
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 进行预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

2.3 随机森林

2.3.1 核心原理

随机森林是一种集成学习方法,它构建多个决策树并将它们的预测结果进行投票或平均,以提高预测的准确性和稳定性。

敲黑板

详细内容可以参照小鱼的专篇:

  • 【机器学习】必会算法之:随机森林

2.3.2 代码实例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-03
# @Author : Carl_DJfrom sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建随机森林模型并训练
model = RandomForestClassifier()
model.fit(X_train, y_train)# 进行预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

2.4 支持向量机

2.4.1 核心原理

SVM通过找到一个超平面来最大化不同类别之间的边界距离,以达到分类目的。
对于线性不可分的数据,SVM使用核技巧映射到更高维度空间中实现分离。

敲黑板

详细内容可以参照小鱼的专篇:

  • 【机器学习】有监督学习算法之:支持向量机

2.4.2 算法公式

SVM的目标是最小化 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 n ξ i ||w||^2 + C\sum_{i=1}^{n}\xi_i ∣∣w2+Ci=1nξi,其中C是正则化参数, ξ i \xi_i ξi是松弛变量。

2.4.3 代码实例

代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-04-03
# @Author : Carl_DJfrom sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建SVM模型并训练
model = SVC()
model.fit(X_train, y_train)# 进行预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

2.5 朴素贝叶斯

2.5.1 核心原理

朴素贝叶斯基于贝叶斯定理,假设特征之间相互独立。
它通过计算给定特征下每个类别的条件概率来进行分类。

2.5.2 算法公式

P ( Y ∣ X ) = P ( X ∣ Y ) P ( Y ) P ( X ) P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} P(YX)=P(X)P(XY)P(Y),其中 P ( Y ∣ X ) P(Y|X) P(YX)是给定特征X下类别Y的条件概率。

2.5.3 代码实例

# -*- coding:utf-8 -*-
# @Time   : 2024-01-21
# @Author : Carl_DJfrom sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建朴素贝叶斯模型并训练
model = GaussianNB()
model.fit(X_train, y_train)# 进行预测
predictions = model.predict(X_test)
print(predictions)

在这里插入图片描述

3、总结

以上介绍的五种机器学习分类算法各有特点和应用场景,如:

  • 逻辑回归朴素贝叶斯适用于小规模数据集
  • 决策树随机森林适用于处理复杂的非线性关系
  • SVM适用于高维数据的分类问题。

选择合适的算法取决于具体问题、数据集的特性以及预期的性能要求。

掌握这些算法的原理和使用方法,可以有效提升机器学习项目的开发效率和效果。

敲黑板:

另一篇,则点击文字即可到达:《【机器学习】一文掌握机器学习十大分类算法(下)。》

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)测评一、二等奖获得者

关注小鱼,学习【机器学习】&【深度学习】领域的知识。

http://www.lryc.cn/news/338270.html

相关文章:

  • 策略模式(知识点)——设计模式学习笔记
  • Python学习从0开始——专栏汇总
  • 【iOS ARKit】Web 网页中嵌入 AR Quick Look
  • Java基础-知识点03(面试|学习)
  • 【GIS学习笔记】ArcGIS/QGIS如何修改字段名称、调整字段顺序?
  • Study Pyhton
  • 【MySQL】:深入解析多表查询(下)
  • 图像入门处理4(How to get the scaling ratio between different kinds of images)
  • 【项目精讲】Swagger接口文档以及使用方式
  • ThingsBoard通过服务端获取客户端属性或者共享属性
  • (78)删除有序数组中的重复项(79)排序矩阵查找
  • elasticSearch从零整合springboot项目实操
  • 【Linux实践室】Linux高级用户管理实战指南:用户所属组变更操作详解
  • C语言: 字符串函数(下)
  • WPF 数据绑定类属性 和数据更新
  • 使用云服务器搭建CentOS操作系统
  • unity的引用传递和数组的联系
  • Android bug Unresolved reference: BR
  • Unity DOTS1.0 入门(1) ECS机制与概述
  • root管理员用户启动kibana报错
  • 【leetcode面试经典150题】50. 插入区间(C++)
  • 第二期书生浦语大模型训练营第三次笔记
  • SpringMVC(一)【入门】
  • SQL Server详细使用教程
  • Spring Boot项目启动时执行指定的方法
  • 红豆Cat 1开源|项目三: 从0-1设计一款HTTP版本RTU(支持GNSS)产品的软硬件全过程
  • 在 Mac 上配置高级内容缓存设置
  • 算法与数据结构 顺序栈(C++)
  • 【WSL】在WIN11安装并使用Linux子系统(Ubuntu)
  • 【vim 学习系列文章 20 -- a:mode 的值有哪些?】