当前位置: 首页 > news >正文

负荷预测 | Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测;
2.单变量时间序列数据集,采用前12个时刻预测未来96个时刻的数据;
3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

TCN(Temporal Convolutional Network,时间卷积网络):TCN是一种卷积神经网络结构,专门用于处理时间序列数据。它通过堆叠一系列的1D卷积层和残差连接来捕捉时间序列中的长期依赖关系。每个卷积层的输出都会被送入下一个卷积层或者其他组件进行进一步处理。

GRU(Gated Recurrent Unit,门控循环单元):GRU是一种循环神经网络结构,用于处理序列数据。它通过门控机制来控制信息的流动和遗忘,从而更好地捕捉序列中的依赖关系。GRU模型可以将TCN的输出作为输入,并根据当前输入和前一个时间步的隐藏状态来生成下一个时间步的隐藏状态。

Attention(注意力机制):注意力机制用于加强模型对序列中不同位置的重要性的关注。通过计算每个时间步的注意力权重,模型可以自动学习并关注序列中最相关的部分。在TCN-GRU模型中,可以使用注意力机制来进一步提取和整合TCN和GRU的输出,以便更好地进行多步预测。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于TCN-GRU-Attention单输入单输出时间序列多步预测
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
end
lgraph = connectLayers(lgraph,outputName,"flatten");
lgraph = connectLayers(lgraph,"flatten","gru1");
lgraph = connectLayers(lgraph,"flatten","flip3");
lgraph = connectLayers(lgraph,"gru1","concat/in1");
lgraph = connectLayers(lgraph,"gru2","concat/in2");%  参数设置
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 150, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.001, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.lryc.cn/news/335085.html

相关文章:

  • SpringBoot整合Spring Data JPA
  • 机器学习(五) -- 监督学习(2) -- k近邻
  • 【.NET全栈】ZedGraph图表库的介绍和应用
  • vivado 设计调试
  • Python3 replace()函数使用详解:字符串的艺术转换
  • 【C++】用红黑树封装map和set
  • 一些好玩的东西
  • 微电网优化:基于巨型犰狳优化算法(Giant Armadillo Optimization,GAO)的微电网优化(提供MATLAB代码)
  • java锁
  • QA测试开发工程师面试题满分问答6: 如何判断接口功能正常?从QA的角度设计测试用例
  • vue 双向绑定
  • python--异常处理
  • element-ui result 组件源码分享
  • VRRP虚拟路由实验(思科)
  • SpringBoot通用模块--文件上传开发(阿里云OSS)
  • Fecify 商品标签功能
  • openstack中windows虚拟机时间显示异常问题处理
  • 很牛的一套仓库管理系统,免费复用【带源码】
  • Spark 部署与应用程序交互简单使用说明
  • 【二分查找】Leetcode 点名
  • JS中的运算符
  • Webots常用的执行器(Python版)
  • mySql数据库学习002-表数据查询操作
  • 【STL】stack与queue的底层原理及其实现
  • Ai大模型如何应用到机器视觉系统中
  • IntelliJ IDEA下载及安装教程(Windows操作系统)
  • 01 Python进阶:正则表达式
  • pdf图片识别分类
  • 24双非考研哈尔滨工程大学计算机(@程程笔记)
  • IO流(2.其他流)