当前位置: 首页 > news >正文

计算机视觉之三维重建(7)---多视图几何(下)

文章目录

  • 一、透视结构恢复问题
    • 1.1 概述
    • 1.2 透视结构恢复歧义
    • 1.3 代数方法
    • 1.4 捆绑调整
  • 二、P3P问题
  • 三、随机采样一致性


一、透视结构恢复问题

1.1 概述

 1. 透视结构恢复问题:摄像机为透视相机,内外参数均未知。

 2. 问题:已知 n n n 个三维点 X j X_j Xj m m m 张图像中的对应点的像素坐标为 x i j x_{ij} xij,且 x i j = M i X j x_{ij}=M_iX_j xij=MiXj,其中 M i M_i Mi 为第 i i i 张图片对应的摄像机投影矩阵,求解 n n n 个三维点 X j X_j Xj 的坐标以及 m m m 个摄像机投影矩阵 M i M_i Mi

在这里插入图片描述

1.2 透视结构恢复歧义

 1. 透视结构与仿射结构的区别在于,透视结构计算得到的投影矩阵 M i M_i Mi,与真实投影矩阵差一个 4 ∗ 4 4*4 44 的可逆矩阵 H H H,也就是差了一个透视变换关系。

在这里插入图片描述

 2. 对于给定 m m m 个相机, n n n 个三维点,我们将有 2 m n 2mn 2mn 个等式, 11 m + 3 n − 15 11m+3n-15 11m+3n15 个未知量。

在这里插入图片描述

1.3 代数方法

 1. 求解步骤:(1) 求解基础矩阵 F F F (归一化八点法)。 (2) 基于 F F F 估计摄像机矩阵 F → M 1 , M 2 F \rightarrow M_1,M_2 FM1,M2。 (3) 三角化。
 关键是第二步的求解。

 2. (1)令 M 1 ∗ = [ I ∣ 0 ] M_1^*=[I|0] M1=[I∣0] M 2 ∗ = [ A ∣ b ] M_2^*=[A|b] M2=[Ab]。推导出基础矩阵 F F F A A A b b b 的关系: F = [ b x ] A F=[b_x]A F=[bx]A:同方向的向量叉乘为 0 0 0

在这里插入图片描述

 (2)如何计算 A A A b b b

在这里插入图片描述

1.4 捆绑调整

 1. 捆绑调整(Bundle Adjustment):捆绑调整使用最小化重投影误差,可以进行多次迭代,使重构点足够拟合真实值,可以应用于欧式结构、仿射结构和透视结构多种情况,是一个恢复结构和运动的非线性方法。

 2. 代数法与分解法的局限性:(1) 因式分解法:假定所有点都是可见的,所以对于存在遮挡,建立对应点关系失败的情况将不得不删除该对应点关系。 (2) 代数法:应用于 2 2 2 视图重建,多视图容易出现误差累积。

 3. 最小化重投影误差: m i n ( E ( M , X ) ) = ∑ i = 1 m ∑ j = 1 n D ( x i j , M i X j ) 2 min(E(M,X))=\sum_{i=1}^m \sum_{j=1}^nD(x_{ij},M_iX_j)^2 min(E(M,X))=i=1mj=1nD(xij,MiXj)2

在这里插入图片描述

 4. 捆绑调整的优势:同时处理大量视图,处理丢失的数据。局限性:大量参数的最小化问题,需要良好的初始条件(即初始 M i M_i Mi)。一般来说,捆绑调整作为运动恢复问题的最后一步,首先通过分解或代数方法先求出优化问题的初始 M i M_i Mi

二、P3P问题

 1. (1) PnP 问题:指通过世界中 N N N 个三维点坐标及其在图像中 N N N 个像点坐标,计算出相机或物体位姿的问题。 (2) P3P 问题:我们只讨论世界中 3 3 3 个三维点和图像中 3 3 3 个像点的关系,计算欧式结构恢复相机位姿的问题,也就是计算出摄像机的外参数 R R R T T T。 (3) 相比于之前求 F F F 和三角化得到摄像机外参数的方法,该方法误差更小。

 2. P3P 问题解法如下所示。其中步骤 1 1 1 的计算方法:由于 a = K [ I 0 ] P a a=K[I \hspace{0.2cm} 0]P_a a=K[I0]Pa,则 K − 1 a = [ I 0 ] P a K^{-1}a=[I \hspace{0.2cm} 0]P_a K1a=[I0]Pa,所极点到像点 a a a 的方向向量为: o a → = K − 1 a ∣ ∣ K − 1 a ∣ ∣ \overrightarrow{oa}=\frac{K^{-1}a}{||K^{-1}a||} oa =∣∣K1a∣∣K1a,同理可以计算出 o b → \overrightarrow{ob} ob o c → \overrightarrow{oc} oc

在这里插入图片描述

在这里插入图片描述

三、随机采样一致性

 1. 随机采样(Random sample consensus):一种适用于数据受到异常值污染的模型拟合方法,通过选择随机均匀采样一定的点,估计模型参数,并输出模型分数最高的模型。

 2. 算法流程:
 (1) 随机均匀采样获取模型求解所需的最小子集。
 (2) 适用该子集估计模型参数。
 (3) 计算剩余样本与当前模型的一致性,统计满足当前模型的内点(在正确拟合模型上的点为内点,负样本点为外点)个数,作为当前模型分数。
 (4) 按照设定次数重复(1)-(3)步,最终输出分数最高的模型。

在这里插入图片描述

http://www.lryc.cn/news/334758.html

相关文章:

  • AUTOSAR配置工具开发教程 - 开篇
  • 配置VM开机自启动
  • 工作的第四天
  • 前端开发语言概览:从HTML、CSS到JavaScript
  • 《Java面试自救指南》(专题二)计算机网络
  • Android14音频进阶之<进阶调试>:Perfetto定位系统音频问题(六十六)
  • 使用 Clickhouse 集成的表引擎同步数据方式详解
  • Linux 性能分析工具大全
  • FME学习之旅---day21
  • volta(轻松切换管理Node.js版本)
  • 机器学习知识点
  • SQL注入利用学习-Union联合注入
  • zookeeper源码(12)命令行客户端
  • 深度学习的数学基础--Homework2
  • 什么是HW,企业如何进行HW保障?
  • 【Redis系列】Spring Boot 集成 Redis 实现缓存功能
  • Flutter之Flex组件布局
  • 【Linux】TCP编程{socket/listen/accept/telnet/connect/send}
  • 【WPF应用33】WPF基本控件-TabControl的详解与示例
  • [C语言]——动态内存管理
  • C++ 学习笔记
  • 本科生学深度学习一残差网络,解决梯度消失和爆炸
  • 初识SpringMVC
  • 【Leetcode】2009. 使数组连续的最少操作数
  • LeetCode-347. 前 K 个高频元素【数组 哈希表 分治 桶排序 计数 快速选择 排序 堆(优先队列)】
  • K8S Deployment HA
  • 【Linux】linux 在指定根目录下,查找wav文件并删除
  • 三、SpringBoot3 整合 SpringMVC
  • 设计模式之解释器模式(上)
  • [23年蓝桥杯] 买二赠一