当前位置: 首页 > news >正文

【Leetcode】top 100 图论

基础知识补充

1.图分为有向图和无向图,有权图和无权图;

2.图的表示方法:邻接矩阵适合表示稠密图,邻接表适合表示稀疏图;

   邻接矩阵:

   邻接表:

基础操作补充

1.邻接矩阵:

class GraphAdjacencyMatrix:def __init__(self, num_vertices):self.num_vertices = num_verticesself.matrix = [[0] * num_vertices for _ in range(num_vertices)]def add_edge(self, start, end):       # 无向图self.matrix[start][end] = 1self.matrix[end][start] = 1

2.邻接表:

from collections import defaultdictclass GraphAdjacencyList:def __init__(self):self.graph = defaultdict(list)def add_edge(self, start, end):        # 无向图self.graph[start].append(end)self.graph[end].append(start)

3.图的遍历:

# 深度优先搜索(DFS):
# 从上到下,递归或栈实现
def dfs(graph, start, visited=None):if visited is None:visited = set()visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 广度优先搜索(BFS):
# 从左到右,队列实现
from collections import dequedef bfs(graph, start):visited = set()queue = deque([start])visited.add(start)while queue:current = queue.popleft()print(current, end=" ")for neighbor in graph[current]:if neighbor not in visited:queue.append(neighbor)visited.add(neighbor)
 题目
200 岛屿数量

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外,你可以假设该网格的四条边均被水包围。

 方法一:深度优先搜索 DFS
若当前点是岛屿时,向上下左右四个点做深度搜索;终止条件:越界;当前是水;

class Solution(object):def numIslands(self, grid):""":type grid: List[List[str]]:rtype: int"""def dfs(nums, x, y):if x<0 or x>len(nums)-1: return if y<0 or y>len(nums[0])-1: return if nums[x][y] =='0':return else:nums[x][y] = '0'    # 必须先置0,否则会在两个'1'间连续递归至超过栈长dfs(nums, x-1, y)dfs(nums, x+1, y)dfs(nums, x, y-1)dfs(nums, x, y+1)cnt = 0for i in range(len(grid)):for j in range(len(grid[0])):if grid[i][j] == '1':dfs(grid, i, j)cnt += 1return cnt

方法二:广度优先搜索 BFS

若当前点是岛屿时,将其上下左右四个点都加入队列;终止条件:越界;当前是水;

class Solution(object):def numIslands(self, grid):""":type grid: List[List[str]]:rtype: int"""def bfs(nums, x, y):queue = [(x, y)]while queue:(x, y) = queue.pop(0)if x<0 or x>len(nums)-1: continue elif y<0 or y>len(nums[0])-1: continue elif nums[x][y] =='0':continue else:nums[x][y] = '0'    # 必须先置0,否则会在两个'1'间连续递归至超过栈长queue.append((x-1, y))queue.append((x+1, y))queue.append((x, y-1))queue.append((x, y+1))cnt = 0for i in range(len(grid)):for j in range(len(grid[0])):if grid[i][j] == '1':bfs(grid, i, j)cnt += 1return cnt
 994 腐烂的橘子

在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一:

  • 值 0 代表空单元格;
  • 值 1 代表新鲜橘子;
  • 值 2 代表腐烂的橘子。

每分钟,腐烂的橘子 周围 4 个方向上相邻 的新鲜橘子都会腐烂。返回 直到单元格中没有新鲜橘子为止所必须经过的最小分钟数。如果不可能,返回 -1 。

第一次遍历将所有新鲜橘子腐烂,统计腐烂次数;第二次遍历统计是否还有剩余的新鲜橘子;(若初始就不含有新鲜橘子呢?)

一次遍历统计新鲜橘子数量的同时记录腐烂橘子的位置(队列);

遍历队列,若当前位置是腐烂橘子则将其上下左右四个点入队,若当前位置是新鲜橘子则将新鲜橘子数量-1再将其上下左右四个点入队;需要将处理过的位置的值置为0,代表不再处理;

class Solution(object):def orangesRotting(self, grid):""":type grid: List[List[int]]:rtype: int"""cnt, queue = 0, []m, n = len(grid), len(grid[0])for i in range(m):for j in range(n):if grid[i][j] == 1:cnt += 1elif grid[i][j] == 2:queue.append([i,j])if cnt == 0: return 0time, stack = -1, []while queue:[x, y] = queue.pop(0)if -1<x<m and -1<y<n and grid[x][y]:if grid[x][y] == 1: cnt -= 1grid[x][y] = 0            # 不再处理这个点stack.append([x-1, y])stack.append([x+1, y])stack.append([x, y-1])stack.append([x, y+1])if not queue and stack:queue = stacktime += 1 stack = []return -1 if cnt else time

计算遍历深度用BFS

207 课程表

你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程  bi 。

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。

方法一:广度优先搜索

from collections import deque
from collections import defaultdictclass Solution(object):def canFinish(self, numCourses, prerequisites):""":type numCourses: int:type prerequisites: List[List[int]]:rtype: bool"""degree = [0]*numCourses    maps = defaultdict(list)   queue = deque()for cur, pre in prerequisites:degree[cur] += 1                      # 统计每门课的先修课程数maps[pre].append(cur)                 # 记录基础课和对应的进阶课for i in range(numCourses):if degree[i] == 0: queue.append(i)    # 无先修课程(基础课)时入队count = 0while queue:course = queue.popleft()count += 1for i in maps[course]:                # 将以course为基础课的进阶课的先修课数-1degree[i] -= 1if degree[i] == 0:                # 已修完全部基础课queue.append(i)  return count == numCourses

方法二:深度优先搜索

class Solution(object):def canFinish(self, numCourses, prerequisites):""":type numCourses: int:type prerequisites: List[List[int]]:rtype: bool"""degree = [0]* numCoursesmaps = defaultdict(list)def dfs(i):if degree[i]==-1: return False    # degree[i]==-1 表示会陷入循环if degree[i]==1: return True      # degree[i]==1 表示能完成课 degree[i]=-1                      # 防止 1-0-1 转回来的情况for pre in maps[i]:               # 遍历每门基础课if not dfs(pre): return Falsedegree[i]=1                       # 该门课可以完成return Truefor cur, pre in prerequisites:        # 记录先修课和其基础课程maps[cur].append(pre)for i in range(numCourses):           # 遍历每门课dfs(i)return sum(degree) == numCourses      # 若每门课都完成应该全为1
208 实现Trie(前缀树)

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。

核心:使用「边」来代表有无字符,使用「点」来记录是否为「单词结尾」以及「其后续字符串的字符是什么」

class TrieNode:def __init__(self):self.children = {}self.is_end = Falseclass Trie(object):def __init__(self):self.root = TrieNode()def insert(self, word):""":type word: str:rtype: None"""node = self.rootfor c in word:if c not in node.children:node.children[c] = TrieNode()node = node.children[c]node.is_end = Truedef searchPrefix(self, word):node = self.rootfor c in word:if c not in node.children: return Nonenode = node.children[c]return nodedef search(self, word):""":type word: str:rtype: bool"""node = self.searchPrefix(word)return node is not None and node.is_enddef startsWith(self, prefix):""":type prefix: str:rtype: bool"""node = self.searchPrefix(prefix)return node is not None
 额外补充

flood fill 带你学习Flood Fill算法与最短路模型 - 时间最考验人 - 博客园 (cnblogs.com)

http://www.lryc.cn/news/333711.html

相关文章:

  • 【沈阳航空航天大学】 <C++ 类与对象计分作业>
  • Vue3 自定义指令Custom Directives
  • 蓝桥杯 【日期统计】【01串的熵】
  • CSP201409T5拼图
  • mongoDB 优化(2)索引
  • 【2024系统架构设计】案例分析- 5 Web应用
  • 布隆过滤器详解及java实现
  • CloudCompare 点云工具
  • Linux 著名的sudo、su是什么?怎么用?
  • C语言分支语句
  • android 资源文件混淆
  • 注册接口和前置SQL及数据生成及封装
  • 鸿蒙实战开发-通过输入法框架实现自绘编辑框
  • 深度学习中的注意力模块的添加
  • Docker 部署开源远程桌面工具 RustDesk
  • intellij idea 使用git ,快速合并冲突
  • AcWing26. 二进制中1的个数。三种解法Java
  • 【ADB】常见命令汇总(持续更新)
  • 【递归与递推】数的计算|数的划分|耐摔指数
  • 企业案例:金蝶云星空集成钉钉,帆软BI
  • 简单设计模式讲解
  • 基于springboot的社区医疗服务系统
  • 影院座位选择简易实现(uniapp)
  • 调用飞书获取用户Id接口成功,但是没有返回相应数据
  • STM32 GPIO输入检测——按键
  • Rustdesk二次编译,新集成AI功能开源Gpt小程序为远程协助助力,全网首发
  • 面试(03)————多线程和线程池
  • 纯CSS实现未读消息显示99+
  • 【C++】C++ primer plus 第十二章--类和动态内存分配
  • 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测