当前位置: 首页 > news >正文

机器学习中的数学——精确率与召回率

在Yolov5训练完之后会有很多图片,它们的具体含义是什么呢?
在这里插入图片描述
通过这篇博客,你将清晰的明白什么是精确率、召回率。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——精确率与召回率》**

文章目录

  • 一、计算公式
  • 二、详细分析
    • 2.1精确率
    • 2.2召回率

一、计算公式

1. 精确率
在这里插入图片描述
2.召回率
在这里插入图片描述
3. F值
在这里插入图片描述

二、详细分析

2.1精确率

在上一篇文章中,我们已经知道了精度的计算公式:
在这里插入图片描述
一般来说,只要计算出这个 Accuracy 值,基本上就可以掌握分类结果整体的精度了。但是有时候只看这个结果会有问题,所以还有别的指标。 比如下面这个例子:
假设图中的圆点是 Positive 数据、叉号是Negative 数据,我们来考虑一下数据量极其不平衡的情况。
在这里插入图片描述
假设有 100 个数据,其中 95 个是 Negative。那么,哪怕出现模型把数据全部分类为 Negative 的极端情况,Accuracy 值也为 0.95,也就是说模型的精度是 95%。但是不管精度多高,一个把所有数据都分类为 Negative 的模型,不能说它是好模型吧?遇到这种情况,只看整体的精度看不出来问题。
所以要引入别的指标。这些指标稍微有点复杂,结合具体的数据来看更好理解,所以我们用这个例子来说明吧:
在这里插入图片描述
在这里插入图片描述
这个例子看上去对 Positive 数据分类得不够好。首先我们来看第一个指标——精确率。它的英文是 Precision
在这里插入图片描述
这个指标只关注 TP 和 FP。根据表达式来看,它的含义是在被分类为 Positive 的数据中,实际就是 Positive 的数据所占的比例。代入数值来计算看看。
在这里插入图片描述
这个值越高,说明分类错误越少。 拿这个例子来说,虽然被分类为 Positive 的数据有 3 个,但其中只有 1 个是分类正确的。所以计算得出的精确率很低。

2.2召回率

还有一个指标是召回率,英文是 Recall
在这里插入图片描述
把精确率分母上的 FP 换成 FN 就是它了。这个指标只关注 TP 和 FN。根据表达式来看,它的含义是在Positive 数据中,实际被分类为 Positive 的数据所占的比例:
在这里插入图片描述
我们运用公式可以计算出来当前的召回率:
在这里插入图片描述
这个值越高,说明被正确分类的数据越多。 拿这个例子来说,虽然 Positive 数据共有 5 个,但只有 1 个被分类为 Positive。所以计算得出的召回率也很低。
基于这两个指标来考虑精度是比较好的。 精确率和召回率都很高的模型就认为是一个好模型,但是在实际情况下,精确率和召回率会一个高一个低,需要我们取舍

http://www.lryc.cn/news/33341.html

相关文章:

  • Oracle启动数据库报ORA-01102解决办法
  • Go 语言面向对象编程及实践
  • 0102 MySQL05
  • [深入理解SSD系列 闪存2.1.3] 固态硬盘闪存的物理学原理_NAND Flash 的读、写、擦工作原理
  • 洗地机哪家强?洗地机排行榜
  • 【Java基础 下】 029 -- 多线程
  • R语言生物群落(生态)数据统计分析与绘图
  • 浙江首场千人大会现场爆满!实在智能九哥专题演讲:企业数字化转型,从实在RPA开始!
  • Windows 上 执行docker pull命令 提示:The system cannot find the file specified.
  • 查看 WiFi 密码的两种方法
  • 逻辑优化基础-bi-decomposition
  • Modbus转profinet网关连接1200PLC在博图组态与驱动器通讯程序案例
  • Android ART虚拟机 启动和初始化
  • 宇视科技一二三面
  • 优思学院|盘点,精益生产25个工具!【必需收藏】
  • Linux中将多块新硬盘合并成一个,挂载到/mysqldata目录下
  • Git的SSH密钥配置
  • C++回顾(九)——多继承
  • 交流约瑟夫森效应
  • 大数据项目实战之数据仓库:用户行为采集平台——第3章 用户行为日志
  • centos6下为Rstudio安装多版本R
  • TCL 拥抱云原生,实现 IT 成本治理优化
  • 什么是API接口
  • 基于单片机的波形发生器设计
  • phpmyadmin SQL注入 (CVE-2020-5504)
  • 华为机试题:HJ107 求解立方根(python)
  • 论文公式符号规范
  • 哈工大面向服务的软件系统 期末开卷提纲
  • Adding Conditional Control to Text-to-Image Diffusion Models
  • C++从头再来:知识点速通