当前位置: 首页 > news >正文

java数据结构与算法刷题-----LeetCode172. 阶乘后的零

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

文章目录

    • 数学:阶乘的10因子个数
    • 数学优化:思路转变为求5的倍数的个数

在这里插入图片描述

数学:阶乘的10因子个数

解题思路:时间复杂度O( n n n),n为5的个数,空间复杂度O( 1 1 1)
  1. 如果想要求出阶乘,一定会超时。所以我们要找到破题点。就是什么条件下阶乘末尾会出现0。
  2. 我们发现阶乘结果求出来后,不断的提出因子10,能提出多少次,就有几个0. 例如5!=120. 此时进行因式分解为: 10 ∗ ( 12 ) . 10*(12). 10(12).一共提出1个10,因此一共一个0.
  3. 10是由2和5构成的。而且5的个数绝对更少。例如120 = 5 ∗ ( 24 ) 5*(24) 5(24) = 2 ∗ 2 ∗ 2 ∗ ( 15 ) 2*2*2*(15) 222(15).我们发现5的个数决定了阶乘结果中可以和2组成几个10.
  4. 因此我们可以先尝试统计n的阶乘中,5的个数。试一下效果

我们不需要每个阶乘数字都统计,例如5!中只有5这个数会出现5.因为5!=1*2*3*4*5.明眼人都知道,1,2,3,4不会有5的出现。

代码:最起码通过了对吗,说明想法没错,接下来法二会继续优化

在这里插入图片描述

class Solution {public int trailingZeroes(int n) {int ans = 0;//统计5的个数for (int i = 5; i <= n; i += 5) {//只有5,10,15,20,25....会出现5,其它数字不会出现5for (int x = i; x % 5 == 0; x /= 5) {//统计这些因子中的5的个数。例如100这个因子,可以拆解为5*5*4.有两个5++ans;//5的个数}}return ans;}
}

数学优化:思路转变为求5的倍数的个数

解题思路:时间复杂度O( l o g 2 n log_2n log2n),空间复杂度O( 1 1 1)
  1. 以1000为例:1000 = 5 ∗ 200 5*200 5200 = 5 ∗ 5 ∗ 40 5*5*40 5540 = 5 ∗ 5 ∗ 5 ∗ 8 5*5*5*8 5558 = 5 ∗ 5 ∗ 5 ∗ 5 ∗ 8 5 5*5*5*5*\dfrac{8}{5} 555558.则1000的阶乘的5的个数为200+40+8+1 = 249个
  2. 为什么对单个数字1000不断除5,可以求出1000的阶乘中5的个数呢?
  3. 因为我们需要转变思路,从现在开始,我们要统计从1到1000中,5的倍数出现的次数。
  1. 1到1000中,5的倍数出现200次, 200个5的倍数分别是 5 , 10 , 15 , 20 , . . . . . , 1000 5,10,15,20,.....,1000 5,10,15,20,.....,1000
    在这里插入图片描述
  2. 此时如果我们将这200个5的倍数,全部提出一个5,就会获得200个5. 并且因式分解后剩下的值看起来如下: 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ . . . . ∗ 200 1*2*3*4*5*....*200 12345....200,你会发现它们这些数正好组成了200的阶乘所有的数,
    在这里插入图片描述
  1. 此时,我们只需要从1到200这些数中,找当中5的倍数的个数。也就是 5 , 10 , 15 , 20 , . . . , 200 5,10,15,20,...,200 5,10,15,20,...,200
  1. 而200这个阶乘中,5的倍数共出现40次,我们将40次进行统计,然后继续对这40个5的倍数提出一个5的因子。你会发现它们又变成了40的阶乘。
    在这里插入图片描述
  1. 此时继续求40这个阶乘中,5的倍数出现的次数。结果如下:共8个5的倍数,我们将8个5提出后,剩下的数字组成了8的阶乘
    在这里插入图片描述
  2. 继续对8求:共1个5的倍数5,提出1个5后,剩下数字只有1了,也就不用继续遍历了
    在这里插入图片描述
  3. 最终,就可以将所有我们提出的5统计起来,200+40+8+1 = 249个。
代码

在这里插入图片描述

class Solution {public int trailingZeroes(int n) {int count = 0;//统计个数while (n != 0){//只要n的阶乘中还可以有5就继续n /= 5;//获取n这个阶乘中所有5的倍数的个数count += n;//统计个数}return count;}
}
http://www.lryc.cn/news/333081.html

相关文章:

  • 掌握数据相关性新利器:基于R、Python的Copula变量相关性分析及AI大模型应用探索
  • Centos7环境下安装MySQL8详细教程
  • 趣学前端 | 综合一波CSS选择器的用法
  • 数据库 06-04 恢复
  • 基于MPPT的风力机发电系统simulink建模与仿真
  • GD32F30x IO 复用问题
  • BPMNJS 在原生HTML中的引入与使用
  • HarmonyOS 应用开发之通过数据管理服务实现数据共享静默访问
  • ubuntu强密码支持
  • C语言中文分词 Friso的使用教程
  • MySQL中drop、truncate和delete的区别
  • Deep Image Prior
  • leetcode148. 排序链表
  • 【深度学习环境配置】一文弄懂cuda,cudnn,NVIDIA Driver version,cudatoolkit的关系
  • C语言中的字符与字符串:魔法般的函数探险
  • 【JAVASE】带你了解面向对象三大特性之一(继承)
  • Git 如何去使用
  • C语言 | Leetcode C语言题解之第12题整数转罗马数字
  • 【软件工程】测试规格
  • Nginx中间件服务:负载均衡(调度算法)
  • dm8数据迁移工具DTS
  • 【QT教程】QML与C++的交互
  • idea maven 打包 内存溢出 报 GC overhead limit exceeded -> [Help 1]
  • wordpress全站开发指南-面向开发者及深度用户(全中文实操)--创建新主题
  • docker从入门到熟悉
  • 国家开放大学《消费者权益保护法》形考任务答案
  • element-ui card 组件源码分享
  • MPLS基本转发过程,隧道特性、对TTL的处理、BGP路由黑洞
  • ubuntu16.04安装vscode那些事
  • 分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别